

Projetos e Ensaios Mecânicos

CENTRO PAULA SOUZA

Projetos e ensaios mecânicos

Claudemir Claudino Alves

Jorge Taniguti

(autores)

Edvaldo Angelo

Gabriel Angelo

(coautores)

Fundação Padre Anchieta

2011

FUNDAÇÃO PADRE ANCHIETA

Presidência João Sayad Vice-presidência Ronaldo Bianchi, Fernando Vieira de Mello

DIRETORIA DE PROJETOS EDUCACIONAIS Direção: Fernando José de Almeida

Gerência: Monica Gardelli Franco, Júlio Moreno Coordenação Técnica: Maria Luiza Guedes Equipe de autoria Centro Paula Souza Coordenação geral: Ivone Marchi Lainetti Ramos Coordenação da série Mecânica: Meire Satiko Fukusawa Yokota Autores: Claudemir Claudino Alves, Jorge Taniguti **Coautores:** Edvaldo Angelo, Gabriel Angelo Revisão técnica: Roberto Tsuguio Oyakawa Equipe de Edição Coordenação geral: Carlos Tabosa Seabra, Rogério Eduardo Alves

Coordenação editorial: Luiz Marin

Edição de texto: Miguel Angelo Facchini Secretário editorial: Antonio Mello Revisora: Maria Carolina de Araujo Direção de arte: Bbox Design Diagramação: LCT Tecnologia Ilustrações: Alberto Massanobu Honda Pesquisa iconográfica: Completo Iconografia Capa Fotografia: Eduardo Pozella, Carlos Piratininga Tratamento de imagens: Sidnei Testa Abertura capítulos: © James King-Holmes/Science Photo Library /SPL DC/Latinstock

O Projeto Manual Técnico Centro Paula Souza – Coleção Técnica Interativa oferece aos alunos da instituição conteúdo relevante à formação técnica, à educação e à cultura nacional, sendo também sua finalidade a preservação e a divulgação desse conteúdo, respeitados os direitos de terceiros. O material apresentado é de autoria de professores do Centro Paula Souza e resulta de experiência na docência e da pesquisa em fontes como livros, artigos, jornais, internet, bancos de dados, entre outras, com a devida autorização dos detentores dos direitos desses materiais ou contando com a permissibilidade legal, apresentando, sempre que possível, a indicação da autoria/crédito e/ou reserva de direitos de cada um deles. Todas as obras e imagens expostas nesse trabalho são protegidas pela legislação brasileira e não podem ser reproduzidas ou utilizadas por terceiros, por qualquer meio ou processo, sem expressa autorização de seus titulares.

Agradecemos as pessoas retratadas ou que tiveram trechos de obras reproduzidas neste trabalho, bem como a seus herdeiros e representantes legais, pela colaboração e compreensão da finalidade desse projeto, contribuindo para que essa iniciativa se tornasse realidade. Adicionalmente. colocamo-nos à disposição e solicitamos a comunicação, para a devida correção, de quaisquer equívocos nessa área porventura cometidos em livros desse projeto.

O Projeto Manual Técnico Centro Paula Souza - Coleção Técnica Interativa, uma iniciativa do Governo do Estado de São Paulo, resulta de um esforço colaborativo que envolve diversas frentes de trabalho coordenadas pelo Centro Paula Souza e é editado pela Fundação Padre Anchieta. A responsabilidade pelos conteúdos de cada um dos trabalhos/textos inseridos nesse projeto é exclusiva do autor. Respeitam-se assim os diferentes enfoques, pontos de vista e ideologias, bem como o conhecimento técnico de cada colaborador, de forma que o conteúdo exposto pode não refletir as posições do Centro Paula Souza e da Fundação Padre Anchieta.

Dados Internacionais de Catalogação na Publicação (CIP) (Bibliotecária Silvia Marques CRB 8/7377)

A 474

Alves, Claudemir Claudino

Mecânica: projetos e ensaios mecânicos / Claudemir Claudino Alves, Jorge Taniguti (autores); Edvaldo Angelo, Gabriel Angelo (coautores); Roberto Tsuguio Oyakawa (revisor); Meire Satiko Fukusawa Yokota (coordenadora). -- São Paulo: Fundação Padre Anchieta, 2011 (Coleção Técnica Interativa. Série Mecânica, v. I)

Manual técnico Centro Paula Souza

ISBN 978-85-8028-039-5

I. Mecânica -- projetos 2. Resistência dos materiais I. Taniguti, Jorge II. Angelo, Edvaldo III. Angelo, Gabriel IV. Oyakawa, Roberto Tsuguio V. Yokota, Meire Satiko Fukusawa VI. Título

GOVERNADOR Geraldo Alckmin

VICE-GOVERNADOR Guilherme Afif Domingos

SECRETÁRIO DE DESENVOLVIMENTO ECONÔMICO, CIÊNCIA E TECNOLOGIA Paulo Alexandre Barbosa

Presidente do Conselho Deliberativo Yolanda Silvestre

Diretora Superintendente Laura Laganá

Vice-Diretor Superintendente César Silva

Chefe de Gabinete da Superintendência Elenice Belmonte R. de Castro

Coordenadora da Pós-Graduação, Extensão e Pesquisa Helena Gemignani Peterossi

Coordenador do Ensino Superior de Graduação

Angelo Luiz Cortelazzo

Coordenador de Ensino Médio e Técnico Almério Melquíades de Araújo

Coordenadora de Formação Inicial e Educação Continuada Clara Maria de Souza Magalhães

Coordenador de Desenvolvimento e Planejamento

João Carlos Paschoal Freitas

Coordenador de Infraestrutura Rubens Goldman

Coordenador de Gestão Administrativa e Financeira

Armando Natal Maurício

Coordenador de Recursos Humanos Elio Lourenco Bolzani

Assessora de Comunicação Gleise Santa Clara

Procurador Jurídico Chefe Benedito Libério Bergamo

APRESENTAÇÃO

Este volume de Mecânica é o primeiro de uma coleção elaborada especialmente pelo Centro Paula Souza e pela Fundação Padre Anchieta para levar aos alunos das Escolas Técnicas estaduais (Etecs) material didático padronizado, gratuito e de qualidade.

Os livros serão utilizados para pesquisa e como apoio ao conhecimento teórico adquirido em sala de aula, graças à linguagem atraente e inovadora. É mais uma ferramenta aliada à preocupação do Governo do Estado com a qualidade do ensino público profissional.

Disponível em formato de pen-drive, esta publicação ganhará agilidade na atualização de seu conteúdo, sempre que se fizer necessário, o que possibilitará ao aluno consultar informações atualizadas em consonância com as novas tecnologias.

Elaborado a partir de conteúdo preparado por professores do Centro Paula Souza, o material também facilitará aos alunos avaliarem suas competências profissionais exigidas pelo mercado de trabalho. A existência de um material didático unificado, capaz de traduzir a excelência do nível de ensino da instituição, contribuirá para elevarmos ainda mais a qualidade do ensino oferecido pelo Centro Paula Souza. Que essa série proporcione a busca constante e a atualização do conhecimento de nossos alunos e estimule os professores ao aperfeiçoamento constante.

LAURA LAGANÁ

Diretora Superintendente do Centro Paula Souza

Capacitação, oportunidade e desenvolvimento

O Estado de São Paulo tem a melhor e mais ampla rede de ensino Técnico e Tecnológico do Brasil. Atualmente já são 49 Faculdades de Tecnologia (Fatecs) e 198 Escolas Técnicas (Etecs) que, juntas, atendem gratuitamente mais de 250 mil estudantes em todo o Estado.

É um modelo de ensino que serve de exemplo ao país e já se tornou sinônimo de capacitação e oportunidade para o jovem que busca seu lugar no mercado de trabalho.

De cada cinco alunos que se formam nas Etecs, quatro têm emprego garantido. Nas Fatecs, a proporção é de nove empregados para cada dez formados. Mais que uma oportunidade ao jovem, é ainda um instrumento de interiorização do desenvolvimento em todo o nosso Estado, pois oferece cursos específicos de acordo com a vocação econômica de cada região. A Fundação Padre Anchieta, responsável pela produção deste material didático utilizado pelos nossos futuros técnicos especialistas e tecnólogos, é uma grande aliada de nossos estudantes. Contribui diretamente para que todos conquistem uma formação com mais qualidade e excelência.

GERALDO ALCKMIN

Governador do Estado de São Paulo

Sumário

20 Introdução

23 Capítulo I Mecânica básica

.I	Grand	dezas escalares e vetoriais
.2	Vetor	res
	1.2.1	Adição vetorial 27
	1.2.2	Subtração vetorial
	1.2.3	Produto de um número real por um vetor. 31
	1.2.4	Componentes de um vetor 32
.3	Estáti	ca
	1.3.1	Conceito de força 33
	1.3.2	Peso de um corpo 33
	1.3.3	Conversão de unidades de força no SI para
		o Sistema Técnico e o sistema CGS 35
	1.3.4	Princípio da ação e reação
	1.3.5	Resultante de um sistema de forças 36
	1.3.6	Caso particular de sistemas de duas forças . 37 $$
	1.3.7	Equilíbrio de um ponto material 39
.4	Tipos	de carga e apoio
	1.4.1	Tipos de carga
	1.4.2	Tipos de apoio 49
	1.4.3	Exemplo de aplicação 51
.5	Reaçõ	ões de apoios no plano 51
	1.5.1	Equações de equilíbrio 51
	1.5.2	Classificação das estruturas 52
	1.5.3	Cálculo das reações de apoio 53

61 Apêndices

1.6	Trigo	nometria
	1.6.1	Circunferência
	1.6.2	Ciclo trigonométrico
	1.6.3	Seno e cosseno
	1.6.4	Triângulo retângulo
	1.6.5	Relações trigonométricas para o
		retângulo
	1.6.6	Lei dos senos
	1.6.7	Lei dos cossenos
1.7	Potêr	ncias de dez
	1.7.1	Potência de expoente inteiro não r
	1.7.2	Potência de expoente inteiro neg
	1.7.3	Potência de expoente racional
	1.7.4	Propriedades das potências
	1.7.5	Múltiplos e submúltiplos decimais
	1.7.6	Notação científica
1.8	Sister	nas de unidades
	1.8.1	Sistema Internacional de unidade
	1.8.2	Sistema MKS
	1.8.3	Sistema MK*S
	1.8.4	CGS

81 Capítulo 2 Resistência dos materiais

2.I	Esforços	internos	nas	estruturas	• •	

- 2.1.1 Classificação dos esforços
- 2.1.2 Exemplos de carregamentos ...

•	•	•	•	•	•	•	•	•	62
•	•	•	•	•	•	•	•	•	62
•	•	•	•	•	•	•	•	•	64
•	•	•	•	•	•	•	•	•	64
•	•	•	•	•	•	•	•	•	66
)	t	ri	iâ	n	g	u	lo	0	
•	•	•	•	•	•	•	•	•	67
•	•	•	•	•	•	•	•	•	69
•	•	•	•	•	•	•	•	•	70
•	•	•	•	•	•	•	•	•	73
r	١e	g	a	ti	V	С	•	•	73
g	ja	ti	v	0	•	•	•	•	74
•	•	•	•	•	•	•	•	•	74
•	•	•	•	•	•	•	•	•	75
is	5	•	•	•	•	•	•	•	75
•	•	•	•	•	•	•	•	•	77
•	•	•	•	•	•	•	•	•	77
e	S	•	•	•	•	•	•	•	77
•	•	•	•	•	•	•	•	•	79
•	•	•	•	•	•	•	•	•	79
•	•	•	•	•	•	•	•	•	80

Capa: Gabriel Faganello Maruyama, aluno do Centro Paula Souza **Foto:** Eduardo Pozella e Carlos Piratininga

. 82	•	•	•	•	•	•	•	•
. 83	•	•	•	•	•	•	•	•
. 84	•						•	•

Sumário

 2.2 Propriedades mecânicas dos materiais
2.2.1Materiais dúcteis e frágeis
2.2.2 Propriedades mecânicas
2.2.3 Considerações gerais
2.3 Tensões admissíveis
2.3.1 Coeficiente ou fator de segurança (ks) 89
2.3.2 Tabela de tensões admissíveis 90
2.4 Diagrama dos esforços internos solicitantes92
2.4.1 Diagrama da força normal
2.4.2 Diagrama da força cortante e do momento
fletor
2.4.3 Diagrama do momento torçor 108
2.5 Tração e compressão 110
2.5.1 Tensão normal II0
2.5.2 Módulo de elasticidade 110
2.5.3 Dimensionamento de peças III
2.6 Cisalhamento puro 114
2.6.1 Tensão de cisalhamento 115
2.7 Flexão simples
2.7.1 Tipos de flexão
2.7.2 Tensões normais nas vigas
2.7.3 Tensões de cisalhamento na flexão 120
2.7.4 Dimensionamento de vigas 121
2.8 Torção simples 125
2.8.1 Barras de seção circular
2.8.2 Ângulo de torção
2.8.3 Fórmula do torque em função da potência
e da rotação
e da rotação

2.9.1 Tensão ideal. 2.9.2 Cálculo do diâmetro do eixo... 2.10 Flambagem 2.10.1 Carga de flambagem 2.10.2 Tensão de flambagem 2.11 Centro de gravidade e momento de in 2.11.1 Centro de gravidade 2.11.2 Momento de inércia.

2.9 Flexo-torção.....

153 Capítulo 3 Elementos de máquinas

3.I	Intro	dução aos elementos de transmis
	3.1.1	Movimento circular uniforme
	3.1.2	Rendimento em transmissões m
	3.1.3	Momento torçor ou torque
3.2	Moto	r elétrico
	3.2.I	Conjugado do motor
	3.2.2	Elementos de transmissão
	3.2.3	Placa de identificação
3.3	Corr	eias e polias
	3.3.1	Classificação de correias e polia
	3.3.2	Esforços na correia
	3.3.3	Cálculo de transmissão por corre
	3.3.4	Desenho da polia
3.4	Cabo	s de aço
	3.4.I	Construção e tipos de cabos
	3.4.2	Formas construtivas de cabos .

•	•	•	•	•	•	•	•	132
•	•	•	•	•	•	•	•	132
•	•	•	•	•	•	•	•	133
•	•	•	•	•	•	•	•	135
•	•	•	•	•	•	•	•	136
•	•	•	•	•	•	•	•	136
r	١é	ér	°C	ia	ł	•	•	139
•	•	•	•	•	•	•	•	139
•	•	•	•	•	•	•	•	144

ni	SS	sã	C)	•	•	•	•	154
•	•	•	•	•	•	•	•	•	154
n	٦e	20	â	n	i	22	ıs	5.	158
•	•	•	•	•	•	•	•	•	160
	•	•	•	•	•	•	•	•	163
•	•	•	•	•	•	•	•	•	164
	•	•	•	•	•			•	166
•	•	•	•	•	•				168
		•	•	•	•			•	168
lia	as	•	•	•	•			•	168
		•	•	•	•			•	169
r	ei	a	e	en	n	١	/	•	172
	•	•	•	•	•	•	•		175
	•	•	•	•	•	•	•		176
		•	•	•	•			•	176
•	•	•	•	•	•	•	•		178

© STARRETT

SU	m	a	\mathbf{O}

3.4.3 Informações úteis 179
3.4.4 Dimensionamento dos cabos de
movimento
3.5 Correntes 182
3.5.1 Definições e componentes de uma
corrente
3.5.2 Velocidade tangencial da corrente 184
3.5.3 Seleção de correntes
3.6 Eixos 187
3.6.1 Dimensionamento de eixos sujeitos à
flexão
3.6.2 Dimensionamento de eixos sujeitos
à flexo-torção 188
3.7 Engrenagens 193
3.7.1 Engrenagens cilíndricas de dentes retos
(ECDR) 193
3.7.2 Engrenagens cilíndricas de dentes
helicoidais (ECDH)
3.7.3 Outros tipos de engrenagens 206
3.8 Mancais de rolamento e deslizamento 207
3.8.1 Mancais de rolamento
3.8.2 Mancais de deslizamento 217
3.9 Chavetas
3.9.1 Chavetas paralelas retangulares ou
quadradas 221
3.9.2 Tipos de ajustes na montagem
3.9.3 Cálculo do comprimento L da chaveta 222
3.9.4 Outros tipos de chavetas

3.10	Anéis	elásticos, pinos e cupilhas
	3.10.1	Anéis elásticos
	3.10.2	Pinos
	3.10.3	Cupilhas ou contrapinos
3.11	Parafu	sos, porcas e arruelas
	3.11.1	Características dos parafusos d
	3.11.2	Classes de resistência de paraf
	3.11.3	Fixação por atrito
	3.11.4	Furos de passagem de parafus
3.12	Molas	
	3.12.1	Dimensões principais da mola
		helicoidal
	3.12.2	Tensões em molas cilíndricas h
	3.12.3	Fórmula da flecha e comprime
		mola
3.13	Anexo	os – Catálogos de fabricantes
	3.13.1	Catálogo de correias da empre
		Gates do Brasil
	3.13.2	Catálogo de anéis elásticos da
		Dober
	3.13.3	Catálogo completo de corrent
		transmissão da empresa Daido

269 Capítulo 4 Ensaios mecânicos dos materiais 4.1 Obietivos dos ensaios mecânicos.....

4.1 Objetivos dos ensaios mecânicos
4.2 Tração
4.2.1 Limite de elasticidade

	226
	226
	228
	230
	232
e fixação	232
fusos	234
	234
os	237
	239
cilíndrica	
	239
elicoidais	241
ento da	
	242
	245
esa	
	245
empresa	
	262
tes de	
5	264

271	••	•	•	•	•	•	•
272		•		•	•	•	•
274							•

Sumário

	4.2.2 Escoamento
	4.2.3 Limite de resistência 275
	4.2.4 Limite de ruptura
	4.2.5 Estricção 275
	4.2.6 Avaliação das propriedades
4.3	Compressão
	4.3.1 Limitações do ensaio de compressão 282
4.4	Cisalhamento
4.5	Dureza
	4.5.1 Dureza Brinell
	4.5.2 Dureza Rockwell
	4.5.3 Dureza Vickers
4.6	Impacto
	4.6.1 Corpos de provas
	4.6.2 Corpo de prova e sentido de laminação . 306
4.7	Dobramento
	4.7.1 Tipos de processo de dobramento 308
	4.7.2 Dobramento em barras para construção
	civil
	4.7.3 Ensaio de dobramento em corpo de
	prova soldado
4.8	Flexão
4.9	Embutimento
4.10	Fadiga
4.11	Torção
4.12	Líquidos penetrantes
	4.12.1 Classificação dos penetrantes,
	processos e materiais

4.13	Partículas magnéticas						
4.14	Radiografia industrial						
	4.14.1 Utilização do raio X						
	4.14.2 Equipamento de raios gama						
4.15	Ultrassom						
	4.15.1 Produção do ultrassom						
	4.15.2 Acoplante						
	4.15.3 Aparelhos de ultrassom						

335 Referências bibliográficas

ORDASHE/SHUTTERSTOCK

Introdução

O Técnico em Mecânica destaca-se dentre os profissionais que atuam no setor industrial no Brasil em função das competências laborais que são demandadas para o efetivo acompanhamento das grandes evoluções tecnológicas, sociais e políticas que ocorrem no mundo do trabalho.

Neste cenário, que decorre da conjunção das inovações tecnológicas e organizacionais, acentua-se a importância da formação profissional de nível técnico de forma coadunada às exigências da sociedade e do mundo laboral, no que diz respeito à qualidade dos produtos e à flexibilidade nos processos produtivos.

O Técnico em Mecânica, portanto, é o profissional que elabora projetos mecânicos e sistemas automatizados e realiza montagem e instalação de máquinas e equipamentos mecânicos. Planeja e realiza manutenção de equipamentos e desenvolve processos de fabricação de conjuntos mecânicos. Elabora documentação, realiza compras e vendas técnicas, cumpre normas e procedimentos de segurança no trabalho e de preservação ambiental, entre outras atividades.

Dessa forma, a Coleção Técnica Interativa conta com livros específicos para o Curso Técnico em Mecânica, cujo conteúdo poderá atender também outras habilitações que possuam Componentes Curriculares correlatos.

KALINOVSKY /SHUTTERSTOCK

Capítulo I

Mecânica básica

s conceitos da mecânica básica aplicam-se na determinação das forças e suas correspondentes reações em estruturas rígidas submetidas a carregamentos externos. Nosso objetivo ao estudá-la neste livro é prover o técnico de nível médio de algumas ferramentas indispensáveis para os cálculos de resistência dos materiais e para o estudo de elementos de máquinas.

I.I Grandezas escalares e vetoriais

Grandezas escalares

São aquelas que ficam definidas quando conhecemos seu valor numérico e a correspondente unidade. Por exemplo, tempo, massa, área, volume.

Quando dizemos que uma caixa-d'água, como a do esquema indicado na figura 1.1, tem arestas iguais a 1 m e volume igual a 1 m³ (1 metro cúbico), e se complementarmos com a informação de que a densidade da água é igual a 1 000 kg/m³, estamos afirmando que a massa da água contida na caixa é de 1000 kg, e nada mais precisamos acrescentar para definir essas grandezas.

Figura 1.1 Representação geométrica de uma caixa-d'água.

Grandezas vetoriais

São grandezas que, para serem definidas, necessitam de valor numérico, unidade, direção e sentido. Matematicamente são representadas por vetores. São exemplos a força e a velocidade.

Podemos observar na figura 1.2 um automóvel deslocando-se de A para B com velocidade de 100 km/h.

Para o perfeito entendimento da velocidade, além do valor numérico e da unidade, são necessários a direção e o sentido. Por isso dizemos que a velocidade é uma grandeza vetorial.

Para essas condições, temos:

- Valor numérico: 100.
- Unidade: km/h (quilômetros por hora).
- Direção: reta que liga os pontos A e B.
- Sentido: da esquerda para a direita (de A para B).

I.2 Vetores

O vetor é uma entidade matemática importante para a solução de problemas. A figura 1.3 indica uma aplicação bastante conveniente dos vetores, em que podemos observar que a força resultante será a soma das forças individuais.

Inicialmente, avaliamos a força individual de cada participante:

$$\vec{f}_{1a} \quad \vec{f}_{1b} \quad \vec{f}_{1c} \qquad \qquad \vec{f}_{2a} \quad \vec{f}_{2b} \quad \vec{f}_{2c}$$
Para a esquerda (grupo 1) para a direita (grupo 2)

Em seguida, somamos as forças de cada grupo:

$$\vec{f}_{1a} + \vec{f}_{1b} + \vec{f}_{1c} = \vec{F}_1 \qquad \qquad \vec{f}_{2a} + \vec{f}_{2b} + \vec{f}_{2c} =$$

Figura 1.2 Automóvel deslocando-se do ponto A para o ponto B.

Figura 1.3

No cabo de guerra, a força resultante que cada grupo exerce é a soma das forças individuais.

Se a força total do grupo 1 (indicada como F_1) for igual à do grupo 2 (F_2), haverá empate. Caso contrário, um dos dois grupos será vencedor.

Para a solução dos problemas de mecânica o roteiro é semelhante, porém com notação e metodologia específicas.

Definições e operações com vetores

O vetor é um ente matemático que se caracteriza por um valor numérico (módulo), uma direção e um sentido.

Representa-se o vetor por um segmento orientado, neste caso \overline{AB} , em que A é a origem e B, a extremidade, conforme indicado na figura 1.4.

Figura 1.4 Representação de um vetor.

Notação:

- vetor: \vec{V}
- módulo do vetor: $|\vec{\mathbf{v}}|$ ou v

O comprimento do segmento AB em uma escala adotada para representação gráfica é o módulo do vetor. O sentido pode ser indicado por uma seta.

A figura 1.5 mostra esquematicamente dois vetores iguais aplicados em pontos diferentes.

- Módulo: $V_1 = V_2$.
- Direção: horizontal.
- Sentido: da esquerda para a direita.

Dois vetores são diferentes quando têm ao menos um desses três elementos diferente.

Na situação mostrada na figura 1.6, notamos que, para um disco que gira com velocidade angular constante, sua velocidade tangencial no ponto A é igual a V_1 , e no ponto B, é \vec{V}_2 , de forma que $\vec{V}_1 \neq \vec{V}_2$, pois possuem sentidos opostos.

- Módulo: $V_1 = V_2$.
- Direção: vertical.
- Sentido: \vec{V}_1 (descendente) e \vec{V}_2 (ascendente).

O vetor oposto de um dado vetor \vec{V} é definido como tendo o mesmo módulo e direção, porém sentido oposto, e é representado por $-\vec{V}$, conforme esquematizado na figura 1.7.

Como os módulos são iguais, temos: $\vec{V} + (-\vec{V}) = \vec{0}$

As operações vetoriais podem ser realizadas de modo analítico (por meio de cálculos) ou gráfico.

I.2.1 Adição vetorial

Há três maneiras de obter a soma de vetores por métodos gráficos.

A primeira é denominada método do paralelogramo. Conforme indicado na figura 1.8, são traçadas linhas auxiliares e paralelas aos vetores \vec{V}_1 e \vec{V}_2 . O vetor soma, ou seja, resultante (indicado por \vec{R}), pode ser obtido traçando-se uma diagonal que liga o ponto A à outra extremidade de R. Em notação vetorial, temos $\vec{\mathsf{R}} = \vec{\mathsf{V}}_1 + \vec{\mathsf{V}}_2$.

CAPÍTULO I

Figura 1.6

Representação das velocidades tangenciais de um disco com velocidade angular constante.

Figura 1.7 Esquema ilustrativo de um vetor oposto.

Figura 1.8

Obtenção da soma de dois vetores pelo método do paralelogramo.

O outro método é denominado regra dos vetores consecutivos. Uma vez que os lados do paralelogramo opostos a \vec{V}_1 e \vec{V}_2 são iguais em módulo e direção, o vetor resultante \vec{R} pode ser obtido unindo a origem de \vec{V}_1 com a extremidade de \vec{V}_2 , ou a origem de \vec{V}_2 com a extremidade de \vec{V}_1 , conforme representado na figura 1.9.

Figura 1.9

Soma vetorial pela regra dos vetores consecutivos.

Da figura 1.9, concluímos também que a adição de dois vetores é comutativa, isto é, independe da ordem em que \vec{V}_1 e \vec{V}_2 são tomados. Assim:

 $\vec{V}_1 + \vec{V}_2 = \vec{V}_2 + \vec{V}_1$

Pelo fato de não serem grandezas escalares, o módulo do vetor \vec{R} não é igual à soma dos módulos dos vetores \vec{V}_1 e \vec{V}_2 .

Portanto, $\left| \vec{\mathsf{R}} \right| \neq \left| \vec{\mathsf{V}}_1 \right| + \left| \vec{\mathsf{V}}_2 \right|$

Exemplo

Dados dois vetores \vec{P} e \vec{Q} de módulos P = 6 e Q = 8, conforme mostra a figura 1.10, determine graficamente o vetor soma \vec{R} e calcule seu módulo.

Solução

Para obter graficamente (desenhando em escala) o vetor soma \vec{R} , pode-se aplicar a regra do paralelogramo (figura 1.11a) ou a dos vetores consecutivos (figura 1.11b).

Para resolver analiticamente, será utilizado o **teorema de Pitágoras**, de modo a determinar o módulo do vetor soma (R).

 $R^2 = P^2 + Q^2 \Rightarrow R^2 = 6^2 + 8^2 = 36 + 64 \Rightarrow R^2 = 100 \Rightarrow R = 10$

A regra dos vetores consecutivos vale também para três ou mais vetores.

A soma de três vetores $\vec{V}_1 + \vec{V}_2 + \vec{V}_3$ indicados na figura 1.12 é obtida pela adição inicial dos vetores \vec{V}_1 e \vec{V}_2 e, posteriormente, somando o vetor \vec{V}_3 ao vetor $\vec{V}_1 + \vec{V}_2$. Assim, escrevemos:

$$\overrightarrow{V}_1 + \overrightarrow{V}_2 + \overrightarrow{V}_3 = (\overrightarrow{V}_1 + \overrightarrow{V}_2) + \overrightarrow{V}_3$$

Figura 1.10 Exemplo de aplicação da soma de vetores.

trigonometria.

apêndice sobre

-Ver Triângulo

retângulo no

Figura 1.11

Determinação do vetor resultante: a) regra do paralelogramo; b) regra dos vetores consecutivos.

Figura 1.12 Soma de três vetores.

Analogamente, a soma de quatro vetores se obtém pela adição do quarto vetor à soma dos três primeiros. Portanto, podemos calcular a soma de qualquer número de vetores pela aplicação repetida da lei do paralelogramo aos sucessivos pares de vetores, até que todos os vetores tenham sido substituídos por um único vetor resultante.

Após arranjarmos os vetores de modo que a origem de um coincida com a extremidade do anterior, podemos determinar a soma de n vetores unindo a origem do primeiro com a extremidade do último, de acordo com a regra do polígono, como mostra a figura 1.13.

Figura 1.13 Soma de vetores pela regra do polígono.

Como a adição vetorial pode ser uma operação associativa e é comutativa no caso de dois vetores, escrevemos:

$$\vec{V}_1 + \vec{V}_2 + \vec{V}_3 = (\vec{V}_1 + \vec{V}_2) + \vec{V}_3 = \vec{V}_3 + (\vec{V}_1 + \vec{V}_2) = \vec{V}_3 + (\vec{V}_2 + \vec{V}_1) = \vec{V}_3 + \vec{V}_2 + \vec{V}_2$$

A ordem na qual os vários vetores são somados é irrelevante.

1.2.2 Subtração vetorial

Essa operação, indicada pelo sinal de subtração, é análoga à adição vetorial.

Dados dois vetores \vec{V}_1 e \vec{V}_2 , subtrair um vetor \vec{V}_2 de \vec{V}_1 é o mesmo que somar o vetor \vec{V}_1 com o vetor oposto de \vec{V}_2 , que é $-\vec{V}_2$.

Denominamos o vetor resultante \vec{R} vetor diferença (\vec{V}_D) e podemos escrever:

$$\vec{\mathsf{R}} = \vec{\mathsf{V}}_{\mathsf{D}} = \vec{\mathsf{V}}_1 - \vec{\mathsf{V}}_2 = \vec{\mathsf{V}}_1 + (-\vec{\mathsf{V}}_2)$$

Exemplo

Dados os vetores \vec{P} e \vec{Q} , conforme indicado na figura 1.14, cujos módulos valem, respectivamente, 3 e 4, determinar o vetor diferença $\vec{R} = \vec{P} - \vec{Q}$ e calcular seu módulo.

Solução gráfica:

Solução analítica: $\vec{R} = \vec{P} - \vec{Q} = \vec{P} + (-\vec{Q})$

Pelo teorema de Pitágoras, temos:

 $R^2 = P^2 + Q^2 = 3^2 + 4^2 \Rightarrow R^2 = 9 + 16 = 25 \Rightarrow R = 5$

1.2.3 Produto de um número real por um vetor

A multiplicação de um número real por um vetor não modifica a direção dele, mas pode modificar o sentido e o módulo. Assim, o produto $\mathbf{k} \cdot \vec{\mathbf{V}}$, em que \mathbf{k} é um número real e \vec{V} resulta em um vetor \vec{R} com as características abaixo:

$$\vec{\mathsf{R}} = \left\{ \begin{array}{l} \text{módulo:} \mathsf{R} = \left| \mathsf{k} \right| \cdot \mathsf{V} \\ \text{direção: a mesma de } \vec{\mathsf{V}} \text{ (é paralelo a } \vec{\mathsf{V}}) \\ \text{sentido: de } \vec{\mathsf{V}}, \text{ se } \mathsf{k} \text{ for positivo} \\ \text{contrário a } \vec{\mathsf{V}}, \text{ se } \mathsf{k} \text{ for negativo} \end{array} \right.$$

Se $k = 0 \implies \vec{R} = \vec{0}$ (vetor nulo).

Exemplos

1. Dados k = 3 e o vetor \vec{V} , o resultado gráfico pode ser observado na figura 1.15.

2. Dados k = -1,5 e o vetor \vec{V} , o resultado gráfico pode ser observado na figura 1.16.

Figura 1.14 Subtração de vetores.

Figura 1.15

Exemplo gráfico de um vetor produto de um número real

Figura 1.16

Exemplo gráfico de um vetor produto de um número real negativo.

1.2.4 Componentes de um vetor

Dados um vetor \overline{V} indicado pelo segmento orientado \overline{AB} e um eixo arbitrário X, o vetor V_X é representado pelo segmento orientado $\overline{A'B'}$, em que A' e B' são as projeções ortogonais de A e B sobre o eixo X, conforme pode ser observado na figura 1.17. Vx é denominado vetor componente do vetor V no eixo x.

Figura 1.17

Obtenção do vetor componente de \vec{V} no eixo **x**: em a), positivo; em b), negativo.

Chamemos de V_X a medida algébrica do segmento orientado $\overline{A'B'}$. O sinal de V_x será:

- positivo, se o sentido de $\overline{A'B'}$ for o mesmo do eixo X;
- negativo, se o sentido de $\overrightarrow{A'B'}$ for contrário ao sentido do eixo X.

A componente do vetor no eixo X ou projeção de \vec{V} em \vec{x} é representada por ۷.

Analiticamente, podemos obter a projeção do vetor em determinado eixo se conhecermos os dois ângulos do triângulo retângulo formado, conforme mostra a figura 1.18. A obtenção da projeção será o módulo do vetor (V) multiplicado pelo cosseno do ângulo que ele forma com o eixo, ou seja, em cada um dos casos da figura, temos:

em (a) $V_x = V \cdot \cos\alpha$; em (b) $V_y = V \cdot \cos\alpha$

Figura 1.18 Obtenção da projeção de um vetor na forma analítica.

Analogamente, projetando o vetor \vec{V} nos eixos x e y de um plano cartesiano, obtemos os vetores componentes \vec{V}_x e \vec{V} , conforme indicado na figura 1.19.

Portanto, temos: $\vec{V} = \vec{V}_x + \vec{V}_y$, e as componentes $\vec{V}_x \in \vec{V}_y$ sáo: $V_x = V \cdot \cos \alpha e V_y = \hat{V} \cdot \sin \alpha$.

1.3 Estática

A estática é a parte da mecânica que estuda o equilíbrio dos corpos rígidos em repouso ou em movimento uniforme sob a ação de forças externas. Nesse estudo, vamos utilizar as noções sobre vetores apresentadas nas seções anteriores.

I.3.1 Conceito de força

Força é um agente capaz de modificar o estado de movimento de um corpo ou deformá-lo. Resulta da interação entre dois ou mais corpos, que pode ocorrer por contato, como a que fazemos para nos locomover, ou a distância que é o caso das forças gravitacionais e eletromagnéticas.

A força é uma grandeza vetorial, sendo, portanto, indicada por um módulo ou intensidade, uma direção e um sentido.

1.3.2 Peso de um corpo

Pela segunda lei de Newton, a resultante das forças aplicadas a um ponto material é igual ao produto de sua massa pela aceleração que ele adquire. Essa lei é representada pela expressão $F_R = m \cdot a$.

Uma força particular é a da atração da Terra sobre um corpo localizado em sua superfície. Essa força é chamada peso (P) desse corpo (figura 1.20). Sob a ação dessa força, um corpo em **queda livre**, próximo à superfície do planeta, adquire uma aceleração constante chamada aceleração gravitacional, designada por \vec{g} . Dessa forma, um corpo de massa m sofre uma atração gravitacional (peso), vertical e dirigida para o centro do planeta, dada por:

Movimento de um corpo sujeito apenas à atração gravitacional.

-Na mecânica, diz-se que corpos estão em repouso quando sua posição em relação a um dado sistema de referência não muda com o tempo.

Figura 1.20

O peso de um corpo é uma forca exercida à distância pela Terra.

Mais informações encontram-se no apêndice Sistemas de unidades, seção 1.8.

> Ver o apêndice Potências de dez, seção 1.7.

O valor de \vec{g} (módulo) depende da altitude e da latitude do local em que é medido. Na latitude de aproximadamente 45° e ao nível do mar é igual a 9,80665 m/s² ou N/kg, sendo N o símbolo de newton, a unidade de força no Sistema Internacional (SI).

Massa é uma grandeza escalar que indica a quantidade de matéria de um corpo. É obtida pela comparação do corpo com um corpo padrão. Por definição, a massa do corpo padrão é de 1 quilograma (símbolo: kg). Alguns de seus múltiplos e submúltiplos são:

• a tonelada (símbolo: t)
$$\Rightarrow 1 t = 1000 \text{ kg} = 10^3 \text{ kg}$$

• o grama (símbolo: g)
$$\Rightarrow 1 \text{ g} = \frac{1}{1000} \text{ kg} = \frac{1}{10^3} = 10^{-3} \text{ kg}$$

Exemplo

Determinar o peso de um corpo de 100 g.

Solução

É importante notar a diferença entre massa e peso, conceitos que costumam ser confundidos. Em primeiro lugar, a massa é uma grandeza escalar, ao passo que o peso é vetorial. Além disso, a massa é uma característica de cada corpo, independentemente do lugar em que ele se encontra. Já o peso pode variar com a aceleração gravitacional do local.

No exemplo, em que a massa m é 100 g, vamos supor que se queira saber o peso do corpo na Terra, admitindo que **g** seja igual a 9,8 m/s².

m = 100 g = 0,1 kg

 $g = 9.8 \text{ m/s}^2$

Substituindo, na equação P = mg, temos: $P = 0, 1 \cdot 9, 8 = 0, 98 \cong 1 N$, ou seja, a massa de 0,1 kg corresponde a um peso aproximado de 1 N no Sistema Internacional de unidades (SI).

1.3.3 Conversão de unidades de força no SI para o Sistema Técnico e o sistema CGS

No Sistema Técnico de unidades (MK*S), a força é expressa em quilograma--força (kgf), unidade que representa a intensidade do peso de um corpo de massa 1 kg ao nível do mar, ou seja, sob a aceleração da gravidade de aproximadamente 9,8 m/s². Assim, temos:

 $P = 1 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 9.8 \text{ N}$, portanto, 1 kgf = 9.8 N.

No sistema CGS (centímetro, grama, segundo) a unidade de força é o dina. Consideremos o caso de m = 1 kg e $a = 1 \text{ m/s}^2$, então, segundo a lei de Newton

 $F = m \cdot a$, podemos converter metro para centímetro e kg para g. Assim, temos:

 $1 \text{ N} = 1 \text{ kg} \cdot 1 \text{ m/s}^2 = 10^3 \text{ g} \cdot 10^2 \text{ cm/s}^2 = 10^5 \text{ g} \cdot \text{cm/s}^2 \text{ ou } 10^5 \text{ dinas.}$

Portanto, $1 \text{ N} = 10^5 \text{ d}.$

1.3.4 Princípio da ação e reação

As forças de ação e reação entre corpos (terceira lei de Newton) têm a mesma intensidade, a mesma linha de ação, sentidos opostos e a mesma natureza, e são ambas de campo ou ambas de contato. Porém, não se equilibram, pois estão aplicadas em corpos diferentes.

Consideremos um corpo suspenso de massa m, sustentado por um fio ideal (inextensível e de massa desprezível) cuja extremidade é fixa no teto (figura 1.21).

Figura 1.21

a) Corpo suspenso em equilíbrio estático; b) forças que atuam no corpo A; c) forças que agem no fio; d) força que atua no teto.

No corpo atuam a força \vec{P} (peso), que é a ação do campo gravitacional (conforme discutido no item 1.3.2) e a força T, de contato, exercida pelo fio sobre o corpo no ponto A. Como o corpo está em equilíbrio, a força resultante F_{P} é nula.

Ou seja, $F_R = T \rightarrow P = 0 \rightarrow T = P$

Assim, T e P têm a mesma intensidade, porém sentidos opostos, o que é indicado na figura 1.21b.

O fio segura o corpo com a força T (ação no corpo). Este, por sua vez, reage com uma força de mesma intensidade (T) e sentido contrário (reação no fio). Observe que a ação está no corpo e a reação se faz no fio. Na outra extremidade, o fio puxa o teto para baixo e este reage puxando o fio para cima com uma força de intensidade T' (figura 1.21c). Como o fio também está em equilíbrio, a resultante das forças no fio deve ser nula, ou seja:

 $T - T' = 0 \rightarrow T = T'$

Figura 1.22

sistema de forças.

Representação de um

A força de contato T' tem igual intensidade e sentido oposto ao de T, conforme mostra a figura 1.21c.

No teto (em d), também em equilíbrio, a força T', ação do fio e do corpo sobre ele, é equilibrada pela ação do solo, que o sustenta.

1.3.5 Resultante de um sistema de forças

Consideramos um sistema de forças $\vec{F_1}$, $\vec{F_2}$, ..., $\vec{F_n}$, de pontos de aplicação P₁, P₂, ..., P_n, respectivamente, indicados na figura 1.22. A soma vetorial de $F_1, F_2, ..., F_n$ é chamada resultante do sistema de forças.

Se o sistema de forças estiver aplicado a um único ponto, conforme mostra a figura 1.23, a resultante é a força que, aplicada a esse ponto, tem o mesmo efeito que o sistema de forças.

A força resultante de tal sistema é denominada R. Sendo assim:

$$\vec{\mathsf{R}} = \vec{\mathsf{F}}_1 + \vec{\mathsf{F}}_2 + \dots + \vec{\mathsf{F}}_n \quad (1.2)$$

1.3.6 Caso particular de sistemas de duas forças

Forças colineares

Supondo duas forças que tenham a mesma direção e o mesmo sentido, indicadas na figura 1.24 como F_1 e F_2 , a resultante R desse sistema terá a mesma direção e o mesmo sentido das forças que o compõem, porém com intensidade igual à soma das intensidades, como mostra a figura.

As forças $\vec{F_1}$ e $\vec{F_2}$ foram representadas pelos segmentos orientados \vec{AB} e \vec{BC} , de tal forma que a extremidade de $\vec{F_1}$, que é o ponto B, é a origem da força $\vec{F_2}$, o que os torna consecutivos.

A resultante \overline{R} é representada pelo segmento orientado de origem A e extremidade C.

Caso as forças $\vec{F_1}$ e $\vec{F_2}$ tenham a mesma direção e sentidos opostos, como mostra a figura 1.25, a resultante R terá a mesma direção das forças componentes, e o sentido será o mesmo da força de maior intensidade.

CAPÍTULO I

Figura 1.23

Sistema de forcas concentrado em um único ponto.

Figura 1.24 Soma de forcas colineares.

Figura 1.25

Resultante da subtração de forcas colineares de sentidos opostos.

Forças não colineares

Quando forças aplicadas em determinado ponto não são colineares, a resultante $\vec{\mathsf{R}}$ pode ser obtida pela regra dos vetores consecutivos ou simplesmente pela aplicação da regra do paralelogramo (conforme discutido na seção 1.2).

Duas forças não colineares, $\vec{F_1} \in \vec{F_2}$, são aplicadas no ponto P, como mostra a figura 1.26.

Figura 1.26 Aplicação de forças não colineares no ponto P.

A resultante \vec{R} é representada pela diagonal orientada do paralelogramo que passa por P e cujos lados orientados são representações de $\vec{F_1}$ e $\vec{F_2}$.

Para determinarmos a intensidade da resultante, podemos aplicar a lei dos cossenos ao triângulo PAC da figura:

 $R^{2} = F_{1}^{2} + F_{2}^{2} - 2F_{1} \cdot F_{2} \cdot \cos(\pi - \alpha)$

Sabendo que $\cos(\pi - \alpha) = -\cos \alpha$, resulta:

$$R^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1} \cdot F_{2} \cdot \cos \alpha \quad (1.3)$$

Exemplo

Na figura 1.27 estão representadas duas forças concorrentes, $\vec{F_1}$, de intensidade 60 N, e $\vec{F_2}$, de intensidade 100 N, que formam entre si um ângulo de 60°. Determine a resultante dessas forças.

Figura 1.27 Representação de forças concorrentes.

Solução

Podemos determinar o módulo de \vec{R} pela regra do paralelogramo.

$$R^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1} \cdot F_{2} \cdot \cos \alpha$$

$$R^{2} = 60^{2} = 100^{2} + 2 \cdot 60 \cdot 100 \cdot \cos 60^{\circ} \Rightarrow$$

$$R^{2} = 3600 + 10000 + 6000 = 19600 \Rightarrow$$

$$R^{2} = 19600 \Rightarrow R = 140 \text{ N}$$

1.3.7 Equilíbrio de um ponto material

Pelo princípio fundamental da dinâmica ($\vec{F_{R}} = m\vec{a}$), se a aceleração vetorial for nula, a força resultante que atua na massa deve ser zero, isto é:

$$\vec{F}_{R} = \vec{0} \text{ ou } \vec{R} = \vec{0}$$

Se a aceleração vetorial é nula, não há variação de velocidade vetorial, portanto, a velocidade vetorial permanece constante com o tempo. Temos, então, a seguinte definicão:

Um ponto material está em equilíbrio quando a resultante de todas as forças que atuam sobre ele tem módulo igual a zero.

Método do polígono de forças

Se um corpo em equilíbrio está sujeito a várias forças de modo a constituir um sistema concorrente em um plano, essas forças, somadas vetorialmente, formam um polígono fechado (figura 1.28). Se o polígono de forças é fechado, ou seja, se a extremidade da última força coincide com a origem da primeira, a resultante R é nula, conforme mostrado na figura 1.28b.

Figura 1.28

Representação gráfica de polígono fechado de forças.

Exemplo

Dado o sistema indicado na figura 1.29, determine as trações T nos fios AB e AC, sabendo que o sistema está em equilíbrio.

Dados: P = 100 N; sen 30° = 0,5; sen 45° = 0,707 e sen 105° = 0,966.

Figura 1.29 Peso suspenso por cabos.

Solução

Isolando o ponto A, onde concorrem os três fios, a tração no fio vertical tem intensidade igual ao peso P. Nos demais fios, a tração é denominada T_{AB} e T_{AC} .

Como o ponto A está em equilíbrio, a resultante, R, é igual a zero, e o polígono de forças é fechado.

É conveniente iniciar a construção do polígono por um vetor conhecido. Dessa forma, comece pelo vetor \vec{P} , em um ponto qualquer do plano. Na sequência, trace a linha de ação da força \vec{T}_{AC} com origem na extremidade de \vec{P} e direção de 30° em relação à linha de ação vertical da força \vec{P} .

O módulo da força \vec{T}_{AC} (indicado pelo comprimento do segmento) não é conhecido, o que dificulta saber onde o vetor termina. No entanto, a força T_{AB} deve terminar na origem da força \vec{P} , formando um ângulo de 45° com a direção vertical. Basta, então, traçar a linha de ação da força TAB e encontrar o ponto de intersecção das linhas de ação. Esse ponto define o módulo das forças \vec{T}_{AB} e \vec{T}_{AC} , conforme mostrado na figura 1.30.

Aplicando a lei dos senos ao triângulo do polígono de forças e lembrando que a soma dos ângulos internos de um triângulo deve ser 180°, de modo que:

$$\alpha + 30^{\circ} + 45^{\circ} = 180^{\circ} \Rightarrow \alpha = 105^{\circ},$$

obtemos:

$$\frac{100}{\sin 105^{\circ}} = \frac{T_{AB}}{\sin 30^{\circ}} = \frac{T_{AC}}{\sin 45^{\circ}} \Rightarrow \frac{100}{0,966} = \frac{T_{AB}}{0,5} = \frac{T_{AC}}{0,707}$$
$$\frac{100}{0,966} = \frac{T_{AB}}{0,5} \Rightarrow T_{AB} = \frac{100 \cdot 0,5}{0,966} \Rightarrow T_{AB} = 51,2 \text{ N}$$

$$\frac{100}{0,966} = \frac{T_{AC}}{0,707} \Rightarrow T_{AC} = \frac{100 \cdot 0,707}{0,966} \Rightarrow T_{AC} = 73,2 \text{ N}$$

Método de projeções

As projeções sobre os eixos coordenados da resultante R de um sistema de n forças concorrentes $\vec{F_1}$, $\vec{F_2}$, ..., $\vec{F_n}$, atuando em um plano, são iguais à soma algébrica das correspondentes projeções dessas forças. Vamos demonstrar isso observando a figura 1.31, que apresenta uma projeção de **n** vetores, $\vec{F_1}$, $\vec{F_2}$, ... $\vec{F_n}$, nos eixos X, Y e suas respectivas componentes.

Figura 1.30

Construção do polígono de vetores.

(origem arbitrária)

De acordo com o enunciado:

$$R_{x} = F_{1x} + F_{2x} + \dots + F_{nx} = \sum F_{x} \quad (1.4)$$
$$R_{y} = F_{1y} + F_{2y} + \dots + F_{ny} = \sum F_{y} \quad (1.5)$$

Concluímos, então, que:

 $R_x = \Sigma F_x$

O somatório érepresentado pela letra grega sigma maiúscula (Σ) e significa a soma dos termos ou números de uma sequência.

 $R_v = \Sigma F_v$

O somatório (ΣF_x) das forças na direção X representa a soma algébrica dos módulos das forças componentes no eixo X, e o somatório das forças na direção y (ΣF_{ν}) representa a soma algébrica dos módulos das forças componentes no eixo y.

Se o ponto material está em equilíbrio, a resultante \overline{R} é nula e consequentemente suas projeções nos eixos X e Y também são nulas. Daí resulta:

$$R_x = \Sigma F_x = 0$$
 (1.6)
 $R_y = \Sigma F_y = 0$ (1.7)

Portanto, o estudo de equilíbrio de um ponto material sob a ação de um sistema de forças coplanares fornece duas equações escalares.

Exemplo

Determine as trações F nos fios AB e AC, sabendo que o sistema está em equilíbrio, conforme indicado na figura 1.32.

Dados: P = 100 N; cos $60^{\circ} = 0.5$; sen $60^{\circ} = 0.866$.

Solução

Inicialmente, isolamos o ponto A e aplicamos as forças nesse ponto: o peso P e as trações nos fios de sustentação.

Do triângulo retângulo da figura, obtemos:

 $F_{ACx} = F_{AC} \cdot \cos 60^{\circ}$

 $F_{ACy} = F_{AC} \cdot \text{sen } 60^{\circ}$

Como o ponto A está em equilíbrio, pelo método das projeções, temos:

$$R_x=0 \ \mathrm{e} \ R_y=0$$

De acordo com o diagrama de forças,

1.
$$R_x = F_{ACx} - F_{AB} = 0$$

Substituindo o valor de F_{ACx} na equação acima:

$$F_{AC} \cdot \cos 60^{\circ} - F_{AB} = 0 \Rightarrow F_{AC} \cdot 0.5 - F_{AB} = 0 \quad (I)$$

2. $R_{y} = F_{ACy} - P = 0$

$$F_{AC} \cdot \text{sen } 60^{\circ} - P = 0 \Rightarrow F_{AC} \cdot 0,866 - 100 = 0$$
$$F_{AC} = \frac{100}{0,866} \Rightarrow F_{AC} \simeq 115,5 \text{ N} \text{ (II)}$$

CAPÍTULO I

Figura 1.32

a) Problema proposto para determinação das trações nos fios; b) aplicação das forças no ponto A.

Substituindo (II) em (I), temos:

 $115,5 \cdot 0,5 - F_{AB} = 0 \implies F_{AB} = 57,8 \text{ N}$

Método dos momentos

O momento de uma força é uma grandeza que tende a fazer os corpos girar. Uma força \vec{F} aplicada em um ponto A, a determinada distância d do ponto de referência O tende a girar um corpo em relação a esse ponto fixo (figura 1.33).

A medida desse momento é dada por:

 $Mo = \pm F \cdot d$

Figura 1.33

Momento de uma força $ec{\mathsf{F}}$ em relação ao ponto O.

> em que d é a distância da linha de ação da força ao ponto O e F é a intensidade da força.

> Por convenção, adota-se o sinal (+) se a força \vec{F} tende a girar o segmento \overrightarrow{OA} em torno de O no sentido anti-horário, e (-) no sentido horário.

> O ponto O é denominado **polo** ou centro de momento e a distância d, braço ou braço da alavanca.

A linha de ação da força \vec{F} é a reta que passa pelo ponto A e na direção de \vec{F} .

A unidade do momento no Sistema Internacional de unidades (SI) é newton x metro (N · m).

Consideremos uma chave de boca fixa (figura 1.34) e apliquemos três forças de mesma intensidade na extremidade do cabo. Apesar dessa igualdade entre suas intensidades, a força P, atuando normalmente na chave, é mais eficiente para fazer girar a porca do que as forças \overline{Q} e \overline{R} . Essa maior eficiência pode ser percebida quando calculamos os momentos das forças em relação ao ponto O.

Aplicando a definição do momento de uma força em relação a um ponto para as forças \vec{P} , \vec{Q} e \vec{R} , temos:

para a força $\vec{\mathsf{P}} \Longrightarrow \mathsf{M}_1 = \mathsf{P} \cdot \mathsf{d}_1$

para a força $\vec{Q} \Rightarrow M_2 = Q \cdot d_2$

para a força $\vec{R} \Rightarrow M_3 = R \cdot d_3$

Como, $P = Q = R e d_1 > d_2 e d_3 = 0$, deduz-se que $M_1 > M_2 > M_3$.

Do exposto, conclui-se que a força \vec{P} é mais eficiente para girar a porca que a força \vec{Q} . A força \vec{R} não tem tendência nenhuma de girar a porca, visto que, seu momento é zero.

Exemplo

Dado o esquema da figura 1.35, determine os momentos das forças em relação ao ponto O.

CAPÍTULO I

Figura 1.34 Aplicação de forças na extremidade de um elemento fixo em O.

F₃ = 30 N

Figura 1.35

Solução

A distância do ponto O à linha de ação da força F_1 é:

$$d = 20 \text{ cm} = 0,2 \text{ m}$$

Assim,

 $M_1 = F_1 \cdot d_1 = 10 \cdot 20 = 200 \text{ N} \cdot \text{cm}$

 $M_2 = F_2 \cdot d_2 = 20 \cdot 50 \cdot \text{sen } 30^\circ = 500 \text{ N} \cdot \text{cm}$

 $M_3 = F_3 \cdot d_3 = 30 \cdot 0 = 0$

O momento de uma força em relação a um ponto é uma grandeza vetorial e também pode ser denominado **torque**.

Por serem as forças coplanares (pertencentes ao mesmo plano), definimos apenas a intensidade e uma convenção de sinais.

I.4 Tipos de carga e apoio

Até agora foram discutidos alguns conceitos, como aplicações de cálculo vetorial, leis da física clássica (leis de Newton) e noções de sistemas de unidades (Sistema Internacional e Sistema Técnico de unidades).

Nesta seção, vamos discutir com maior profundidade a classificação das cargas em estruturas estáticas e características dos tipos de apoio.

1.4.1 Tipos de carga

Existem diversas classificações para as cargas que atuam em estruturas. Uma delas leva em conta os seguintes fatores: distribuição, posição, tempo de ação, intensidade e forma de aplicação.

Quanto à distribuição

As cargas que atuam em estruturas podem ser concentradas ou distribuídas.

As cargas são **concentradas** quando teoricamente agem sobre um ponto da estrutura conforme indicado na figura 1.36.

Assim, podemos considerá-las concentradas sempre que agirem sobre uma superfície de dimensões sensivelmente reduzidas em comparação com as demais dimensões da estrutura.

Por convenção, as cargas concentradas são representadas por letras maiúsculas (P, Q, W, X, Y, Z etc.).

As cargas são denominadas **distribuídas** quando atuam sobre extensão relevante em relação às demais dimensões da estrutura.

A carga pode ser considerada **linearmente distribuída** se a espessura da faixa de distribuição de cargas for desprezível em comparação com as dimensões da estrutura, conforme mostrado na figura 1.37.

Exemplo de uma carga uniformemente distribuída pode ser o próprio peso de determinada estrutura.

As cargas distribuídas são usualmente representadas por letras minúsculas (p, q, w etc.).

Os carregamentos distribuídos podem ser substituídos por cargas concentradas equivalentes. O carregamento p = 2 kN/m descrito na figura 1.37 pode ser substituído por um carregamento equivalente P, localizado em G (centro do carregamento), igual, neste caso, ao valor da carga distribuída multiplicado pelo comprimento do carregamento.

Portanto:

$$\mathsf{P} = \mathsf{p} \cdot \ell = 2 \cdot 5 = 10 \Longrightarrow \mathsf{P} = 10 \text{ kN}$$

Outro caso bastante comum é uma carga distribuída em forma triangular, conforme indicado na figura 1.38. A carga equivalente a esse carregamento pode ser obtida por:

$$\mathsf{P}=\frac{\mathsf{q}\cdot\ell}{2}\,.$$

Figura 1.36

Cargas concentradas em pontos de uma barra horizontal.

Figura 1.37 Carga linearmente

distribuída.

Figura 1.38

Carregamento distribuído em forma triangular.

Exemplo

Se q = 5 kN/m e ℓ = 3 m, temos:

$$P = \frac{5 \times 3}{2} = 7,5 \implies P = 7,5 \text{ kN}$$

Quanto à posição

Nessa classificação, as cargas podem ser fixas ou móveis.

As cargas são **fixas** quando sua posição é invariável na estrutura, por exemplo, o peso próprio de uma viga.

As cargas são móveis quando sua posição é variável na estrutura, como no caso de um elemento que se desloca em uma ponte rolante.

Quanto ao tempo de ação

Quanto ao tempo de ação, as cargas podem ser permanentes ou transientes.

São permanentes as cargas que agem durante todo o tempo de vida da estrutura. Exemplo: peso próprio dos elementos da estrutura.

São transientes as cargas que atuam sobre as estruturas apenas durante certos intervalos de tempo. Exemplo: ação do vento.

Quanto à intensidade

Neste caso, as cargas podem ser constantes ou variáveis.

São constantes as cargas que mantêm a mesma intensidade ao longo do tempo. Exemplo: carga no suporte de um televisor fixo na parede.

São variáveis as cargas que mudam com o tempo, como o peso suportado por uma escada rolante.

Quanto à forma de aplicação

As cargas podem ser estáticas ou dinâmicas.

São estáticas as cargas que, após a aplicação inicial, praticamente não variam com o tempo. Exemplo: o peso da parede em uma viga.

São dinâmicas as cargas aplicadas instantaneamente com seu valor máximo, podendo ou não ser alternadas ou cíclicas. Exemplo: em um motor de combustão interna, a transferência de energia oriunda da queima do combustível para o virabrequim.

1.4.2 Tipos de apoio

Denominamos apoios ou vínculos os elementos de construção que impedem certos movimentos de uma estrutura.

Os tipos usuais de apoio externo nas estruturas planas são:

- apoio simples ou móvel;
- apoio fixo articulado;
- apoio engastado ou engastamento.

Apoio simples ou móvel

Esse tipo de apoio impede o movimento apenas na direção normal ao plano de apoio e fornece uma única reação de apoio. A figura 1.39 mostra alguns exemplos: cabos, carrinho, roletes e dispositivos deslizantes sobre superfícies lisas, entre outros.

A representação esquemática é feita conforme figura 1.40.

Figura 1.39 Exemplos de apoios móveis.

Figura 1.40 Representação esquemática de apoios móveis.

O plano de apoiorefere-se ao plano em que age a carga. No caso do cabo de aço com a carga suspensa, o plano que a suporta é o teto. Como se trata de corpos em equilíbrio, ela não deve oscilar, e o cabo permanece na direção vertical.

Figura 1.41 Exemplos de apoio fixo articulado.

Observe que esse tipo de apoio não possui restrição ao movimento na direção do plano de apoio, portanto, não terá reação nessa direção.

Apoio fixo articulado

Esse tipo de apoio impede o deslocamento em qualquer direção, entretanto permite rotação.

A reação de apoio é decomposta no plano de apoio e na normal ao plano de apoio. Portanto, podemos dizer que o apoio fixo impede o movimento de translação na direção normal e paralela ao plano de apoio, fornecendo duas reações.

Existem diversos tipos de apoio fixo articulado, como a dobradiça e o rolamento bloqueado, ambos esquematizados na figura 1.41.

A representação simbólica é feita conforme mostra a figura 1.42.

Figura 1.42 Representação simbólica de elementos articulados.

Apoio engastado ou engastamento

Esse tipo de apoio impede qualquer possibilidade de movimento, portanto, no apoio temos reação e momento. Como exemplo citamos uma barra fixa a uma parede, submetida a uma força externa F, conforme figura 1.43.

Figura 1.43 Barra fixa a uma parede submetida a uma força externa.

Observe que, no apoio A, a reação pode ser decomposta na direção x e y (representadas por $F_{Ax} \in F_{Ay}$, e o momento, M, foi representado impedindo uma rotação da barra. Portanto, dizemos que esse tipo de apoio fornece três restrições de movimento. Exemplos são as juntas soldadas, rebitadas, parafusadas etc.

A representação simbólica é indicada na figura 1.44.

I.4.3 Exemplo de aplicação

A figura 1.45 mostra um dispositivo mecânico giratório utilizado em uma máquina de usinagem conhecida por torno. Esse dispositivo é normalmente empregado quando se deseja usinar peças com comprimento muito maior que o diâmetro.

Nessa figura, nota-se que o eixo é apoiado em dois pontos, A e B, suportados por rolamentos. Dada a característica de montagem desse dispositivo, é possível observar que o ponto A é um apoio fixo e B é um apoio móvel.

1.5 Reações de apoios no plano

Nesta seção, estudaremos as reações de apoio no plano, especificamente em um elemento do tipo viga quando submetida a carregamentos externos.

A estrutura elementar em mecânica é a viga, que nada mais é que uma barra prismática, reta e longa.

1.5.1 Equações de equilíbrio

Para que haja equilíbrio, o somatório das forças e momentos em determinada estrutura deve ser nulo.

CAPÍTULO I

Figura 1.44

Representação simbólica de junta engastada.

Figura 1.45 Dispositivo giratório de um torno.

Admitindo uma estrutura qualquer que possui carregamentos, contida no plano cartesiano, escolhe-se um ponto arbitrário nessa estrutura. Caso a estrutura esteja em equilíbrio, obrigatoriamente o somatório das forças na direção da ordenada ou da abscissa nesse ponto deve ser nulo ($\Sigma F_x = 0 \text{ e } \Sigma F_y = 0$), bem como o somatório dos momentos no mesmo ponto também deve ser nulo ($\Sigma M = 0$).

As **convenções** de sinais para o sistema cartesiano ortogonal são:

- a) As forças na direção **X** são positivas se seu sentido for **concordante** com o sentido do eixo X, ou se forem voltadas da esquerda para a direita.
- b) As forças na direção y são positivas se seu sentido for concordante com o sentido do eixo y, ou se forem voltadas para cima.
- c) O momento M é considerado positivo, quando tende a girar no sentido anti-horário.

1.5.2 Classificação das estruturas

Estrutura é o conjunto de partes resistentes de uma construção. As estruturas podem ser classificadas de acordo com o modo como são apoiadas, ou seja, em isostáticas, hiperestáticas e hipoestáticas.

Uma estrutura é classificada como isostática, quando os esforços reativos (reações de apoio) podem ser determinados em função dos esforços ativos (cargas externas aplicadas), somente utilizando as equações de equilíbrio dos corpos rígidos.

A figura 1.46 mostra exemplos de estruturas isostáticas.

Tanto a viga AB como a treliça ABCD indicadas na figura 1.46 possuem reações de apoio que podem ser determinadas, pois o sistema é determinado com três equações de equilíbrio de três incógnitas (X_A, Y_A, Y_B).

Figura 1.46 Exemplo de estruturas isostáticas: a) viga biapoiada; b) treliça.

Nos casos em que o número de esforços reativos é maior que o número de equações da estática, não é possível determinar o sistema, e nesse caso diz-se que a estrutura é **hiperestática**.

A figura 1.47 mostra exemplos de estruturas hiperestáticas.

Na figura 1.47a, a viga é sustentada por dois apoios fixos, de modo que temos quatro reações (X_A , Y_A , X_B , Y_B).

A estrutura é hiperestática porque o número de incógnitas é maior que o número de equações (três) da estática. Diz-se que o sistema é uma vez hiperestático, ou que possui grau 1 de hiperestaticidade.

Na figura 1.47b, a viga apresenta uma extremidade engastada e a outra articulada. Nesse caso, diz-se que o sistema possui grau 2 de hiperestaticidade, pois apresenta cinco incógnitas. Três delas (X_A, Y_A, M_A) referentes ao apoio engastado e duas (X_{B}, Y_{B}) referentes ao apoio fixo, isto é, duas a mais em relação ao número de equações da estática.

Finalmente, são hipoestáticas as estruturas cujo número de reações de apoio é menor que o número de equações da estática.

A figura 1.48 é um exemplo de estrutura hipoestática, cuja viga está sob dois apoios móveis. Dessa forma, o número de incógnitas (dois) é menor que o número de equações (três) da estática.

Esse tipo de estrutura é instável e pouco usado.

1.5.3 Cálculo das reações de apoio

Exemplos

1. A viga é apoiada em um rolete em A e em uma articulação fixa em B, conforme esquema indicado na figura 1.49. Desprezando o peso da viga, determinar as reações nos apoios A e B.

Figura 1.47

Exemplos de estruturas hiperestáticas: a) estrutura com grau I de hiperestaticidade; b) estrutura com grau 2 de hiperestaticidade.

Figura 1.48 Exemplo de viga hipoestática.

Antes de iniciar a solução do problema, deve-se adotar o seguinte procedimento:

- analisar os tipos de apoio e indicar com vetores as reações de apoio;
- verificar se a estrutura é isostática; se for, teremos três incógnitas e três equações de equilíbrio e, portanto, uma única solução.

Solução

Figura 1.49

Viga apoiada em rolete e em articulação fixa.

> Sugestão: desenhar a viga simplificada com carregamentos ativos e reativos, eliminando os apoios.

Aplicando as três equações de equilíbrio, temos:

a)
$$\Sigma F_x = 0 \Rightarrow X_B - 15 = 0 \Rightarrow X_B = 15 \text{ kN}$$

b) $\Sigma F_y = 0 \Rightarrow Y_A + Y_B - 20 - 10 = 0 \Rightarrow Y_A + Y_B = 30 \text{ kN}$
c) $\Sigma M_A = 0 \Rightarrow -20 \cdot 20 + Y_B \cdot 40 - 10 \cdot 50 = 0 \Rightarrow$
 $\Rightarrow -400 + Y_B \cdot 40 - 500 = 0 \Rightarrow$
 $\Rightarrow Y_B \cdot 40 = 900 \Rightarrow Y_B = \frac{900}{40} \Rightarrow Y_B = 22,5 \text{ kN}$
d) $\Sigma M_B = 0 \Rightarrow -Y_A \cdot 40 + 20 \cdot 20 - 10 \cdot 10 = 0 \Rightarrow -Y_A \cdot 40 + 400 - 100 = 0 \Rightarrow$
 $\Rightarrow -Y_A \cdot 40 = -300 \Rightarrow Y_A = \frac{300}{40} \Rightarrow Y_A = 7,5 \text{ kN}$

Outra forma seria substituir Y_B na equação 2, e o resultado seria o mesmo.

2. Calcular as reações nos apoios A e B em uma barra com cargas concentradas, conforme esquema na figura 1.50:

a)
$$\Sigma F_x = 0 \Rightarrow X_B - 1 = 0 \Rightarrow X_B = 1 \text{ kN}$$

b) $\Sigma F_y = 0 \Rightarrow Y_A + Y_B - 2 + 4 = 0 \Rightarrow Y_A + Y_B = 6 \text{ kN}$ (I)
c) $\Sigma M_A = 0 \Rightarrow Y_B \cdot 4 + 2 \cdot 2 - 4 \cdot 2 = 0 \Rightarrow Y_B \cdot 4 + 4 - 8 = 0 = 0$
 $\Rightarrow Y_B = 1 \text{ kN}$ (II)

Substituindo (II) em (I), temos:

$$Y_A + 1 = 6 \Longrightarrow Y_A = 5 \text{ kN}$$

3. Calcular as reações nos mancais no eixo da figura 1.51.

Solução

Inicialmente simplifiquemos a viga e os apoios, conforme figura 1.51b.

CAPÍTULO I

Figura 1.50 Barra com cargas concentradas.

Figura 1.51

- a) Eixo e mancal;
- b) esquema simplificado
- da viga e dos apoios.

Aplicando as equações de equilíbrio, temos:

a)
$$\Sigma F_{X} = 0 \Rightarrow X_{A} = 0$$
 (não há solicitação externa na direção horizontal)

b)
$$\Sigma F_y = 0 \Rightarrow Y_A + Y_B - 300 = 0 \Rightarrow Y_A + Y_B = 300 \text{ kgf}$$
 (I)
c) $\Sigma M_A = 0 \Rightarrow Y_B \cdot 300 - 300 \cdot 100 = 0 \Rightarrow Y_B \cdot 300 = 30\ 000 \Rightarrow$
 $\Rightarrow Y_B = \frac{30\ 000}{300} \Rightarrow Y_B = 100 \text{ kgf}$ (II)

Substituindo (II) em (I), temos: $100 + Y_A = 300 \Rightarrow Y_A = 200 \text{ kgf}$

4. Determinar a reação na base do suporte horizontal de ferro fundido, fixado por parafusos, conforme indicado na figura 1.52.

Solução

Substituímos o suporte por uma viga em balanço engastada em A.

a) $\Sigma F_x = 0 \Longrightarrow X_A = 0$ b) $\Sigma F_v = 0 \Rightarrow Y_A + 400 - 600 = 0 \Rightarrow Y_A = 200 \text{ N}$ c) $\Sigma M_{A} = 0 \Longrightarrow -M_{A} - 400 \cdot 200 + 600 \cdot 400 = 0 \Longrightarrow M_{A} = 160\,000 =$ $= 1.6 \cdot 10^5 \text{ N} \cdot \text{mm}$

5. Calcular as reações nos apoios A e B, com carregamento que apresenta cargas concentradas e distribuídas no eixo, como indicado na figura 1.53.

Solução

Inicialmente é necessário substituir a carga distribuída por uma carga concentrada, localizada no centro de gravidade do carregamento distribuído.

$$\mathsf{P} = \mathsf{p} \cdot \mathsf{q} = 3 \cdot 2 = 6 \text{ kN}$$

Aplicando as equações de equilíbrio, temos:

a)
$$\Sigma F_{X} = 0 \Rightarrow X_{B} + 3 = 0 \Rightarrow X_{B} = -3 \text{ kN}$$

O valor negativo obtido no somatório das forças na direção X indica que a reação de apoio X_B possui sentido oposto ao adotado inicialmente. Se desejarmos dimensionar esse eixo, a reação deverá ser corrigida.

b)
$$\Sigma F_y = 0 \Rightarrow Y_A + Y_B - 2 - 6 = 0 \Rightarrow Y_A + Y_B = 8 \text{ kN}$$

c) $\Sigma M_A = 0 \Rightarrow Y_B \cdot 4 + 2 \cdot 1 - 6 \cdot 2 = 0 \Rightarrow Y_B \cdot 4 + 2 - 12 = 0 \Rightarrow$

$$\Rightarrow Y_{B} \cdot 4 = 10 \Rightarrow Y_{B} = \frac{10}{4} \Rightarrow Y_{B} = 2,5 \text{ kN}$$

d) $\Sigma M_{R} = 0 \Rightarrow -Y_{A} \cdot 4 + 6 \cdot 2 + 2 \cdot 5 = 0 \Rightarrow -Y_{A} \cdot 4 + 12 + 10 = 0 \Rightarrow$

$$\Rightarrow -Y_{A} \cdot 4 = -22 \Rightarrow Y_{A} = \frac{22}{4} \Rightarrow Y_{A} = 5,5 \text{ kN}$$

A equação *b* pode ser usada para verificar os valores obtidos de $Y_A e Y_B$.

Figura 1.53

Carregamento com cargas concentradas e distribuídas.

6. Dada uma viga com carregamento indicado na figura 1.54, calcular as reações nos apoios.

Solução

Inicialmente, substituímos a carga distribuída por uma carga concentrada em seu centro de gravidade G.

$$\mathsf{P} = \frac{\mathsf{p} \cdot \ell}{2} = \frac{5 \cdot 3}{2} = 7,5 \text{ kN}$$

Aplicando as equações de equilíbrio, temos:

a)
$$\Sigma F_y = 0 \Rightarrow Y_A + Y_B - 7, 5 - 2 = 0 \Rightarrow Y_A + Y_B = 9,5 \text{ kN}$$

b) $\Sigma M_A = 0 \Rightarrow -7, 5 \cdot 2 - 2 \cdot 4 + Y_B \cdot 5 = 0 \Rightarrow -15 - 8 + Y_B \cdot 5 = 0 \Rightarrow$
 $\Rightarrow Y_B = \frac{23}{5} \Rightarrow Y_B = 4,6 \text{ kN}$
c) $\Sigma M_B = 0 \Rightarrow 2 \cdot 1 + 7, 5 \cdot 3 - Y_A \cdot 5 = 0 \Rightarrow 2 + 22, 5 - Y_A \cdot 5 = 0 \Rightarrow$
 $\Rightarrow -Y_A \cdot 5 = -24, 5 \Rightarrow Y_A = 4,9 \text{ kN}$

7. Para a estrutura indicada na figura 1.55, calcular as reações nos apoios A e B.

Aplicando as equações de equilíbrio para a estrutura, temos:

a) $\Sigma F_x = 0 \Rightarrow X_B - 200 = 0 \Rightarrow XB = 200 \text{ kgf}$ b) $\Sigma F_v = 0 \Rightarrow Y_A + Y_B - 300 - 500 = 0 \Rightarrow Y_A = Y_B = 800 \text{ kgf}$ c) $\Sigma M_{A} = 0 \Rightarrow Y_{B} \cdot 50 + 200 \cdot 15 - 500 \cdot 20 + 300 \cdot 20 = 0 \Rightarrow$ $\Rightarrow Y_{_{B}} \cdot 50 + 3\,000 - 10\,000 + 6\,000 = 0 \Rightarrow Y_{_{B}} \cdot 50 = 1000 \Rightarrow Y_{_{B}} = 20 \text{ kgf}$ d) $\Sigma M_{B} = 0 \Rightarrow -Y_{A} \cdot 50 + 300 \cdot 70 + 200 \cdot 15 + 500 \cdot 30 = 0 \Rightarrow$ $\Rightarrow -Y_{A} \cdot 50 + 21000 + 3000 + 15000 = 0 \Rightarrow -Y_{A} \cdot 50 = -39000 \Rightarrow$ \Rightarrow Y_A = 780 kgf

A equação *b* pode ser utilizada na verificação das reações verticais.

8. Um suporte é solicitado por uma carga de intensidade P, conforme indicado na figura 1.56. Calcular as reações nos apoios A e B e sua resultante. Considerar a massa do suporte desprezível.

Figura 1.55 Esquema proposto para o sétimo exemplo.

Figura 1.56 Suporte solicitado por carga **P**.

Solução

A figura 1.56 mostra que essa estrutura possui dois tipos de apoio, articulação (A) e móvel (B).

Aplicando as três condições de equilíbrio, temos:

a)
$$\Sigma F_{X} = 0 \Rightarrow X_{A} - X_{B} = 0 \Rightarrow X_{A} = X_{B}$$

b) $\Sigma F_{y} = 0 \Rightarrow Y_{A} - P = 0 \Rightarrow Y_{A} = P$
c) $\Sigma M_{A} = 0 \Rightarrow X_{B} \cdot 80 - P \cdot 60 = 0 \Rightarrow X_{B} = \frac{60 P}{80} = \frac{3}{4} P \therefore X_{B} = 0,75 P$

Substituindo X_B na equação *a*, temos:

$$X_{A} = X_{B} = 0,75 P$$

A figura 1.57 mostra a reação no apoio A (R_A):

$$R_{A}^{2} = P^{2} + \left(\frac{3}{4}P\right)^{2} = P^{2} + \frac{9}{16}P^{2} = \frac{25}{16}P^{2} \Longrightarrow R_{A} = \frac{5}{4}P \Longrightarrow R_{A} = 1,25P$$

Para medirmos o arco, vamos nos restringir a duas unidades: o grau e o radiano.

- grau (símbolo °): o arco unitário de comprimento igual a $1/_{360}$ da circunferência que contém o arco;
- radiano (símbolo rad): o arco unitário que possui comprimento igual ao raio da circunferência que contém o arco, conforme indicado na figura 1.59.

Sabendo que o comprimento da circunferência é $C = 2\pi r$ e supondo que o raio r e o arco AB têm a mesma medida de 1 radiano, concluímos:

$C = 2\pi$ rad

Com base nesse dado, podemos estabelecer a seguinte correspondência para conversão de unidades: 2π rad é equivalente a 360°.

Em consequência das definições, podemos obter as relações:

Grau (°)	360°	180°	90°	60°	45°
Radianos (rad)	2 π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$

Exemplo

Converter em radianos o ângulo de 60°.

Solução

Como as medidas são diretamente proporcionais, pode-se estabelecer a seguinte relação:

$$\frac{180^{\circ} - \pi \operatorname{rad}}{60^{\circ} - \alpha \operatorname{rad}} \Longrightarrow \alpha = \frac{60^{\circ} \cdot \pi}{180^{\circ}} \Longrightarrow \alpha = \frac{\pi}{3} \operatorname{rad}$$

Portanto, 60° correspondem a $\frac{\pi}{3}$ rad.

ara complementar este trabalho, foram incluídas algmas seções referentes à matemática fundamental e a sistemas de unidades. O conhecimento prévio de tais conteúdos auxiliará no desenvolvimento de tópicos referentes à mecânica básica.

I.6 Trigonometria

A trigonometria, por definição, é o estudo das propriedades dos triângulos, das funções trigonométricas e suas aplicações.

Nos itens que seguem são indicadas algumas relações trigonométricas úteis à mecânica básica.

I.6.1 Circunferência

Uma circunferência de raio r possui comprimento (perímetro) igual a $C=2\pi \cdot r$, ou $C = \pi \cdot d$, uma vez que o diâmetro (d) é igual a duas vezes o raio.

Para qualquer circunferência, a divisão do perímetro por seu diâmetro resulta em uma constante representada pela letra grega π , cujo valor é igual a 3,141592653589... Ou seja, π é um número irracional, de forma que possui infinitas casas decimais.

Para a maioria dos cálculos, $\pi = 3,14$ pode ser considerada uma aproximação razoável.

A circunferência indicada na figura 1.58 possui dois pontos, A e B, contidos em seu perímetro, de modo que obtemos dois arcos de circunferência: AB e BA.

Figura 1.59

Radiano: arco que possui comprimento igual ao do raio.

30°	0°
$\frac{\pi}{6}$	0

1.6.2 Ciclo trigonométrico

Ciclo trigonométrico, como pode ser observado na figura 1.60, é uma circunferência à qual se associa um sistema cartesiano ortogonal com origem no centro O e cujo raio é unitário.

Figura 1.60 Ciclo trigonométrico.

Figura 1.61 Convenção de sinais dos arcos em um ciclo trigonométrico.

A convenção usual de sinais em um ciclo trigonométrico é dada conforme mostra a figura1.61.

1. Adota-se o ponto A como ponto de origem e B ou C como extremidade do percurso de qualquer arco trigonométrico.

2. Consideram-se positivos os arcos gerados no sentido anti-horário e negativos os arcos gerados no sentido horário.

Portanto: \widehat{AB} é positivo e \widehat{AC} é negativo.

1.6.3 Seno e cosseno

O seno e o cosseno são funções trigonométricas bastante utilizadas para descrever comportamentos ondulatórios.

Nesta seção, apenas o primeiro e o segundo quadrantes serão desenvolvidos.

Em um plano cartesiano arbitrário, traçamos um arco de comprimento α (alfa) variável, conforme podemos observar na figura 1.62.

Definimos como seno do arco α sua projeção no eixo das ordenadas, cujo comprimento é igual a OP_2 ($OP_2 \leq 1$, uma vez que é menor ou no máximo igual ao raio).

Analogamente, definimos como cosseno do arco α sua projeção no eixo das abscissas, cujo tamanho é igual a OP_2 ($OP_2 \leq 1$, uma vez que é menor ou no máximo igual ao raio).

Concluímos que, caso α pertença ao primeiro ou ao segundo quadrante,

 $(0 \le \alpha \le \pi)$, o seno desse arco será positivo ou igual a zero. Já o cosseno de α é positivo se $0 < \alpha < \pi/2$ e negativo caso $\pi/2 < \alpha < \pi$.

O desenvolvimento das funções seno e cosseno em relação à variação do ângulo α (de zero a $\pi/2$) é indicado na figura 1.63. Note que a função cosseno é defasada de $\pi/_2$ em relação à senoidal e ambas possuem amplitude igual a $\pm A$.

Figura 1.62 Arco variável no ciclo trigonométrico.

Figura 1.63

Gráfico das funções seno e cosseno para lphavariando de zero a 2π .

Dados:

• O arco
$$\alpha$$
, tal que $\frac{\pi}{2} < \alpha < \pi$.

• O ponto P'do ciclo é simétrico de P em relação ao eixo dos senos.

Deduz-se que:

$$\alpha + \beta = \pi \Longrightarrow \beta = \pi - \alpha$$

Se o triângulo éretângulo, então o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (teorema de Pitágoras) $a^2 = b^2 + c^2$.

e consequentemente:

 $\operatorname{sen} \alpha = \operatorname{sen} \beta = \operatorname{sen} (\pi - \alpha)$

 $\cos \alpha = -\cos \beta = -\cos (\pi - \alpha)$

I.6.4 Triângulo retângulo

O triângulo é retângulo quando um de seus ângulos internos é reto, conforme mostra a figura 1.65.

Figura 1.65 Triângulo retângulo.

Na figura:

- a = medida do lado BC
- b = medida do lado AC
- $C = medida do lado \overline{AB}$

O lado \overline{BC} , oposto ao ângulo reto, é chamado **hipotenusa**, e os lados \overline{AB} e AC, adjacentes ao ângulo reto, são chamados catetos do triângulo ABC.

Para simplificar, diremos que o triângulo retângulo ABC tem hipotenusa a e catetos b e C.

Exemplo

Para o triângulo proposto na figura 1.66, determinar a medida *a*:

 $\therefore a^2 = 100 \Rightarrow a = 10$

1.6.5 Relações trigonométricas para o triângulo retângulo

Fixando o ângulo agudo α , conforme mostra a figura 1.67, temos:

1. Seno do ângulo agudo α é a relação entre o cateto oposto ao ângulo e a hipotenusa.

 $sen \alpha = \frac{c}{c} = \frac{cateto oposto}{cateto and cateto and cateto$ hipotenusa а

Figura 1.66

Exemplo de cálculo proposto de acordo com o teorema de Pitágoras.

Figura 1.67

Exemplo de triângulo retângulo com ângulo agudo lpha arbitrário.

2. Cosseno do ângulo agudo α é a relação entre o cateto adjacente ao ângulo e a hipotenusa.

 $\cos \alpha = \frac{b}{a} = \frac{\text{cateto adjacente}}{a}$ hipotenusa а

3. Tangente do ângulo agudo α é a relação entre o cateto oposto ao ângulo e o cateto adjacente ao ângulo.

$$tg \ \alpha = \frac{c}{b} = \frac{cateto \ oposto}{cateto \ adjacente}$$

Exemplo

Dado o triângulo retângulo ABC indicado na figura 1.68, calcular sen α , cos α e tgα.

Figura 1.68 Triângulo retângulo para exemplo de cálculo.

Tabela I.I

Relações trigonométricas

sen
$$\alpha = \frac{3}{5} = 0,6$$
; cos $\alpha = \frac{4}{5} = 0,8$; tg $\alpha = \frac{3}{4} = 0,75$

Na tabela 1.1, são indicadas algumas relações trigonométricas.

Ângulo (α)	0°	30°	45°	60°	90°
sen $lpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	I
cos α	I	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{2}$	I	$\sqrt{3}$	À

Considerando o triângulo retângulo ABC indicado na figura 1.69:

as seguintes relações são válidas:

- $b^2 = a \cdot m$
- $c^2 = a \cdot n$
- $h^2 = m \cdot n$
- $b \cdot c = a \cdot h$

1.6.6 Lei dos senos

Em um triângulo qualquer, a relação entre cada lado e o seno do ângulo oposto é constante e igual à medida do diâmetro da circunferência circunscrita.

Demonstração

Consideremos um triângulo ABC qualquer, inscrito em uma circunferência de raio R, conforme mostra a figura 1.70.

Pelo vértice B, tracemos \overline{BA} , que corresponde ao diâmetro. Liguemos A' com C, formando o triângulo A'BC, que é retângulo em C por estar inscrito em uma semicircunferência.

Os ângulos α e α ' são congruentes, porque são ângulos inscritos, aos quais corresponde o mesmo arco BC.

Figura 1.69

Relações trigonométricas úteis.

Figura 1.70

Esboço para demonstração da lei dos senos.

Sabemos que 2R = d, em que d é o diâmetro da circunferência. Pelas relações trigonométricas já vistas, temos:

$$\Delta A'BC$$
, retângulo $\Rightarrow \frac{a}{2R} = \operatorname{sen} \alpha' = \operatorname{sen} \alpha$
 $\frac{a}{2R} = \operatorname{sen} \alpha \Rightarrow \frac{a}{\operatorname{sen} \alpha} = 2R \Rightarrow \frac{a}{\operatorname{sen} \alpha} = d$

Analogamente, temos:

$$\frac{\mathsf{b}}{\mathsf{sen }\beta} = \mathsf{d} \ \mathsf{e} \ \frac{\mathsf{c}}{\mathsf{sen }\gamma} = \mathsf{d}$$

Concluímos que, para qualquer ângulo interno, conforme indicado na figura 1.71, temos:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = c$$

Figura 1.71 Generalização para a lei dos senos.

1.6.7 Lei dos cossenos

Em um triângulo qualquer, o quadrado da medida de um lado é igual à soma dos quadrados das medidas dos outros dois lados, menos duas vezes o produto das medidas dos dois lados pelo cosseno do ângulo que eles formam.

Demonstração

1. Consideremos um triângulo ABC qualquer, para α < 90°, conforme indicado na figura 1.72.

Inicialmente, traçamos uma reta \overline{BD} perpendicular a \overline{AC} . Obtemos no triângulo retângulo BDC a seguinte relação:

 $a^2 = n^2 + h^2$ (I)

Relação análoga pode ser obtida no triângulo BDA:

$$c^2 = m^2 + h^2 \implies h^2 = c^2 - m^2$$
 (II)

Notamos que a dimensão b é a composição de m mais n, de modo que:

n = b - m (III)

Substituindo as equações (II) e (III) em (I), obtemos a seguinte relação:

 $a^2 = (b - m)^2 + c^2 - m^2 \implies a^2 = b^2 - 2bm + m^2 + c^2 - m^2 \implies$

$$\Rightarrow$$
 a² = b² + c² - 2bm

Entretanto, sabemos que para o triângulo BAD a dimensão m é:

 $m = c \cdot \cos \alpha$

Dessa forma, concluímos que $a^2 = b^2 + c^2 - 2bc \cdot cos \alpha$

2. Para o triângulo ABC fornecido pela figura 1.73, sabe-se que o ângulo é compreendido entre 90° < α < 180°. Analogamente à demonstração anterior, temos:

APÊNDICES

Figura 1.72

Primeiro esboço para demonstração da lei dos cossenos.

Figura 1.73

Segundo esboço para demonstração da lei dos cossenos.

Tracemos uma reta \overline{BD} perpendicular a \overline{AC} . Obtemos no triângulo retângulo BCD a seguinte relação:

 $a^2 = n^2 + h^2$ (I)

O mesmo pode ser obtido no triângulo BAD:

 $h^2 = c^2 - m^2$ (II)

Temos também: n = b + m (III)

Substituindo as equações (II) e (III) em (I), obtemos a seguinte relação:

 $a^2 = (b + m)^2 + c^2 - m^2 \Rightarrow a^2 = b^2 + 2bm + m^2 + c^2 - m^2 \Rightarrow$

 \Rightarrow a² = b² + c² + 2bm

Entretanto, sabemos que, para o triangulo BAD, a dimensão m pode ser obtida da seguinte forma:

 $\frac{m}{c} = \cos 180^{\circ} - \alpha \Longrightarrow m = c \cdot \cos 180^{\circ} - \alpha \Longrightarrow m = -c \cdot \cos \alpha$

Dessa forma, concluímos que $a^2 = b^2 + c^2 - 2bc \cdot cos \alpha$.

Analogicamente, provamos que, para um triangulo qualquer, conforme mostra a figura 1.74, temos:

Figura 1.74 Generalização para lei dos cossenos.

 $b^2 = a^2 + c^2 - 2ac \cdot \cos \beta$ $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$

Exemplo

Para o triângulo indicado na figura 1.75, determinar a dimensão a.

Solução

Adotando a notação da figura acima e aplicando a lei dos cossenos, temos:

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos \alpha$$

$$a^{2} = 3^{2} + 5^{2} - 2 \cdot 3 \cdot 5 \cdot \cos 120^{\circ} \Rightarrow$$

$$\Rightarrow a^{2} = 9 + 25 - 30 \cdot (-0,5) = 34 + 15 \Rightarrow$$

$$\Rightarrow a^{2} = 49 \Rightarrow a = 7$$

1.7 Potências de dez

Nesta seção, abordaremos o emprego da potência de dez, a fim de reduzir a quantidade de algarismos e facilitar operações matemáticas, e também indicaremos como representá-la utilizando notação científica.

1.7.1 Potência de expoente inteiro não negativo

Por definição, dado um número real a (base) e um número inteiro n (expoente) maior que 1, define-se a **potência enésima de a** pela relação:

 $a^n = a \cdot a \cdot a \cdot \dots \cdot a$ n fatores

O símbolo **a**ⁿ representa o produto de **n** fatores iguais a **a**, em que

 $(a \in R, n \in Z e n > 1).$

Figura 1.75

Problema exemplo para lei dos cossenos.

Para n = 0 e n = 1, adotam-se as seguintes definições especiais:

 $a^1 = a$

a⁰ = 1

Exemplos

1. $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

2. $10^6 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$

1.7.2 Potência de expoente inteiro negativo

Dado um número real **a**, não nulo, e um número **n** inteiro ($n \in N$), define-se a potência **a⁻ⁿ** pela relação:

$$a^{-n} = \frac{1}{a^n} \quad (a \neq 0)$$

Na relação, $\mathbf{a}^{-1} = \frac{1}{a}$ é chamado de inverso ou recíproco do número.

Exemplos

1.
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0,125$$
 2. $10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0,01$

1.7.3 Potência de expoente racional

Quando o expoente é um número do tipo $m/_n$, em que m é um número inteiro qualquer e n um número natural e a base a > 0, define-se potência de base a e expoente $m/_n$ pela relação:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Exemplos

1.
$$2^{\frac{3}{4}} = \sqrt[4]{2^3} = \sqrt[4]{8}$$

2. $5^{\frac{-2}{3}} = \sqrt[3]{5^{-2}} = \sqrt[3]{\frac{1}{5^2}} = \sqrt[3]{\frac{1}{25}}$
3. $10^{\frac{2}{3}} = \sqrt[3]{10^2} = \sqrt[3]{100}$

Admitindo satisfeitas as condições de existência das potências em cada caso, são válidas as seguintes propriedades:

P.1
$$a^{m} \cdot a^{n} = a^{m+n}$$

P.2 $\frac{a^{m}}{a^{n}} = a^{m-n}$
P.3 $(a^{m})^{n} = a^{m-n}$
P.4 $(a \cdot b)^{n} = a^{n} \cdot b^{n}$
P.5 $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$
Exemplos
1. $10^{2} \cdot 10^{3} = 10^{2+3} = 10^{5}$ (P.1)
2. $\frac{10^{7}}{10^{5}} = 10^{7-5} = 10^{2}$ (P.2)
3. $(10^{2})^{3} = 10^{2\cdot3} = 10^{6}$ (P.3)
4. $(2 \cdot 10)^{3} = 2^{3} \cdot 10^{3} = 8 \cdot 10^{3}$ (P.4)

5.
$$\left(\frac{10}{3}\right)^5 = \frac{10^5}{3^5}$$
 (P.5)

1.7.5 Múltiplos e submúltiplos decimais

Em algumas situações é conveniente expressar números com menor quantidade de algarismos. Sendo assim, utiliza-se a forma de potência de dez e adiciona-se um prefixo anteposto à unidade. Apresentamos abaixo alguns múltiplos e submúltiplos decimais na forma de potência de 10, e a denominação dos prefixos correspondentes.

		Prefixo	Símbolo		
Múltiplos	$1000000000 = 10^9$	giga	G		
	$1000000 = 10^6$	mega	М		
	$1000 = 10^{3}$	quilo	k		
	$100 = 10^{2}$	hecto	h		
	10 = 10 ¹	deca	da		
	10 ⁰ = 1	unidad	e no SI		
Submúltiplos	$0,1 = 10^{-1}$	deci	d		
	$0,01 = 10^{-2}$	centi	с		
	$0,001 = 10^{-3}$	mili	m		
	$0,00000I = I0^{-6}$	micro	μ		

Exemplos

1. 5000000 N = $5 \cdot 10^6$ N = 5 MN

2. 0,005 m = $5 \cdot 0,001$ m = $5 \cdot 10^{-3}$ m = 5 mm

Abaixo seguem exemplos de simplificações utilizando a potência de dez.

- 1. $1000000 = 10^{6}$
- 2. 0,01 = 10^{-2}
- 3. $100^3 = (10^2)^3 = 10^6$
- 4. $(0,1)^{-3} = (10^{-1})^{-3} = 10^3$

Alguns cálculos de multiplicação e simplificação utilizando potências de dez:

1.
$$1000^2 \cdot 0,01^2 = (10^3)^2 \cdot (10^{-2})^2 = 10^6 \cdot 10^{-4} = 10^2$$

2. $0,1^3 \sqrt{100^4} = (10^{-1})^3 \sqrt{(10^2)^4} = 10^{-3} \sqrt{10^8} = 10^{-3} \cdot 10^{-8} = 10^{-3-8} = 10^{-11}$
3. $6000000 = 6 \cdot 10^6$
4. $0,002 = 2 \cdot 10^{-3}$

5. $0,0045 = 45 \cdot 10^{-4}$

6. $0,025 = 25 \cdot 10^{-3}$

 $7.25000 = 25.10^3$

1.7.6 Notação científica

A notação científica serve para exprimir de forma condensada valores reais que possuem diversas casas decimais. Um número em notação científica pode ser descrito por:

 $N \cdot 10^{n}$, em que n é um expoente inteiro e N é tal que $1 \le N < 10$.

Para exprimir a medida em notação científica, o número N deve ser formado por todos os algarismos significativos.

Exemplo

Utilizando a notação científica, expressar as dimensões 260s e 0,0045 m. Incluindo todos os algarismos significativos, temos:

2,60 · 10² s e 4,5 · 10⁻³ m.

1.8 Sistemas de unidades

1.8.1 Sistema Internacional de unidades

O sistema de unidades adotado oficialmente no Brasil é o Sistema Internacional ou, abreviadamente, SI.

São sete as unidades fundamentais de referência no SI, e cada uma corresponde a uma grandeza.

Grandeza	Símbolo	Unidade
Comprimento	m	metro
Massa	kg	quilograma
Tempo	S	segundo
Intensidade de corrente elétrica	А	ampere
Temperatura termodinâmica	К	kelvin
Quantidade de matéria	mol	mol
Intensidade luminosa	cd	candela

As unidades **derivadas** são deduzidas, direta ou indiretamente, das fundamentais. Como exemplo, citamos a seguir algumas importantes unidades mecânicas derivadas.

Grandeza	Símbolo	Unidade
Força	Ν	newton
Torque	N∙m	newton-metro
Potência	W	watt
Velocidade	m/s	metro por segundo
Pressão	$rac{N}{m^2}$ ou Pa	pascal

Para a medida de ângulos são adotadas duas unidades suplementares: o **radiano** (rad), para ângulos planos, e o **esterradiano** (sr), para ângulos sólidos.

Há unidades que não pertencem ao SI, mas são aceitas paralelamente ao SI, sem restrição de prazo. São elas: o dia (d), a hora (h), o minuto (min), o segundo (s), o grau (°), o litro (l) e a tonelada (t).

Grafia dos nomes de unidades

Todas as unidades, fundamentais ou derivadas, quando escritas por extenso devem ter inicial minúscula, mesmo nomes ilustres da ciência. Exemplos: newton, pascal, watt, hertz. É exceção a unidade de temperatura da escala Celsius, que se escreve "grau Celsius" (°C).

Não são admitidas partes escritas por extenso misturadas com partes escritas por símbolos para representar as unidades. É errado, por exemplo, escrever quilômetro/h ou km/hora; o correto é quilômetro por hora ou km/h.

O plural das unidades é obtido simplesmente pelo acréscimo da letra **s**, mesmo que se contrariem regras gramaticais. Assim, escrevem-se newtons, pascals, decibels, mols, amperes etc. São exceções a essa regra as unidades que terminam por s, $x \in z$, as quais não variam no plural (siemens, lux, hertz).

Se as unidades são compostas por multiplicação, cujos elementos são independentes, ambos são flexionados. Exemplos: newtons-metros, quilowatts-horas.

O mesmo ocorre com as unidades compostas por palavras não ligadas por hífen: metros quadrados, milhas marítimas etc. O denominador de unidades compostas por divisão não vai para o plural. Exemplos: radianos por segundo, newtons por metro quadrado, metros por segundo etc. Também não vão para o plural, em unidades compostas, as unidades que são elemento complementar ligado por hífen ou preposição: anos-luz, quilogramas-força, unidades de massa atômica etc.

Todas as unidades, derivadas ou fundamentais, admitem múltiplos e submúltiplos simbolizados pela adição de um prefixo anteposto à unidade. Exemplos: MPa, daN, μm.

Grafia dos símbolos de unidades

Os **símbolos** são escritos com **letras minúsculas**, exceto quando se trata de nome de pessoa.Exemplos: m para metro, s para segundo, N para newton, Pa para pascal, Hz para hertz etc.

Nas unidades compostas, os símbolos devem ser escritos um em seguida do outro, separados ou não por um ponto de multiplicação. Exemplos: Nm ou N \cdot m (newton-metro); kWh ou kW \cdot h (quilowatt-hora).

Símbolos nunca flexionam no plural. Assim, 30 metros deve ser escrito 30 m, e não 30 ms.

O símbolo de uma unidade que contém divisão pode ser escrito por qualquer destas três formas:

N · m²/kg

ou $N \cdot m^{2} \cdot kg^{-2}$

ou
$$\frac{N \cdot m^2}{kg^2}$$
.

I.8.2 Sistema MKS

Na mecânica, qualquer grandeza pode ter sua unidade dada pela combinação das unidades de comprimento, massa e tempo.

O sistema de unidades formado pelo conjunto dessas unidades recebe o nome de **Sistema MKS** (M de metro; K de quilograma e S de segundo).

Nesse sistema, algumas unidades derivadas têm nomes especiais: para a força, **newton**; para a pressão, **pascal** e para a energia, **joule**.

I.8.3 Sistema MK*S

Força, comprimento e tempo são as grandezas fundamentais no MK*S, também chamado de Sistema Técnico de unidades. A sigla MK*S representa M de metro, K* de quilograma-força (símbolo: kgf) e S de segundo.

1.8.4 CGS

O sistema CGS tem como unidades fundamentais o **centímetro**, o **grama** e o **segundo**.

A força é uma grandeza com unidade derivada, definida no CGS como:

1 unidade de força = $1g \cdot 1\frac{cm}{s^2}$

Essa unidade de força é chamada de **dina**.

Capítulo 2

partes internas da barra, há solicitação do material e este opõe certa resistência, que se manifesta sob forma de esforços resistentes, denominados tensões.

2.1.1 Classificação dos esforços

Suponhamos que a estrutura em equilíbrio da figura 2.2 seja cortada por uma seção transversal S, de modo a separar essa estrutura em dois corpos livres, AS e SB, indicados como partes I e II respectivamente.

Para manter qualquer uma dessas partes em equilíbrio, e nas mesmas condições anteriores ao corte, é necessário aplicar, nos diversos pontos da seção transversal, os esforços que atuavam anteriormente ao corte.

Considerando o corpo livre AS, cuja seção transversal é indicada na figura 2.3, os esforços internos equivalentes aplicados ao centro de gravidade são representados por uma força resultante R e um momento M.

A força R pode ser decomposta em duas componentes, uma **normal** (N), perpendicular à seção, e outra **cortante** (Q), paralela à seção. Essa decomposição pode ser observada na figura 2.4.

"Resistência dos materiais", na mecânica, estuda esforços internos que atuam em estruturas, componentes de máquinas, dispositivos mecânicos e outros, e determina sua geometria para que resistam aos carregamentos (solicitações) de forma segura.

Anteprojeto é a faseinicial de um projeto. O objetivo deste capítulo é prover o técnico de nível médio de conhecimentos em resistência dos materiais, de modo que sejam possíveis a seleção e o dimensionamento de estruturas, equipamentos e dispositivos.

Figura 2.I

Diagrama de blocos geral para anteprojeto. A figura 2.1 mostra de forma esquemática um **anteprojeto** que, necessariamente, requer dimensionamento de dispositivos e seleção de materiais.

Em nosso estudo,denominamos estrutura o conjunto de elementos resistentes de uma construção qualquer.

2.1 Esforços internos nas estruturas

A figura 2.2 indica esquematicamente uma **estrutura** em equilíbrio sob ação de esforços externos. São considerados esforços ativos o peso próprio da estrutura e as cargas que nela atuam (P_1 , P_2 e P_3).

As reações nos pontos A e B, devidas às cargas (P1, P2 e P3), são denominadas esforços reativos.

As reações de apoio devidas às cargas aplicadas nos pontos C, D e E ocorrem porque a ação dessas cargas se transmite aos apoios A e B através do material constituinte das barras da estrutura. Por causa dessa transmissão, em todas as

Figura 2.2

Desenho esquemático de uma estrutura.

Figura 2.3

Representação da seção transversal do trecho AS.

A força normal pode ser de tração ou compressão, dependendo do sentido da força.

A figura 2.4 ilustra esquematicamente a decomposição do momento no plano da seção, denominado momento torçor (M_t), e no plano perpendicular ao plano da seção, denominado momento fletor (M).

Figura 2.4

Indicação esquemática das forças e planos de ação dos momentos.

Figura 2.5 Ação dos esforços

independentes na barra

A figura 2.5 mostra esquemas dos diferentes tipos de esforços internos independentes que atuam em uma barra. N, Q, M e M_t denominam-se esforços internos solicitantes e são importantes no cálculo das tensões internas nas estruturas.

Em resumo, a classificação dos esforços pode ser feita da seguinte maneira:

2.1.2 Exemplos de carregamentos

Para cada tipo de solicitação idealizada (à esquerda na figura 2.6), podemos observar seu carregamento em uma estrutura real (à direita).

2.2 Propriedades mecânicas dos materiais

Todos os projetos mecânicos envolvem diretamente a seleção de materiais, em que são levados em conta critérios técnicos e econômicos. Por esse motivo é indispensável seu conhecimento.

CAPÍTULO 2

Figura 2.6 Exemplos de carregamentos.

Nesta seção são introduzidos alguns conceitos fundamentais relativos às propriedades dos materiais, como a ductilidade, o módulo de elasticidade, regiões de um gráfico de tensão por deformação e outros.

2.2.1 Materiais dúcteis e frágeis

Os materiais metálicos utilizados em engenharia classificam-se em dúcteis e frágeis.

O comportamento dúctil ou frágil dependerá de diversas condições, como temperatura, pressão e microestrutura.

Um material é considerado dúctil quando apresenta grandes deformações antes de romper-se. Citamos como exemplo o alumínio e o cobre, que sob condições normais de temperatura e pressão têm comportamento dúctil.

Um material é considerado frágil quando apresenta pouca deformação antes de romper-se. Exemplos de comportamento frágil são o concreto e os materiais cerâmicos.

Todos os materiais são deformáveis sob a ação de esforços. Para nosso estudo, considera-se uma barra prismática sujeita à ação de uma força axial (longitudinal), de tração F, conforme indicado na figura 2.7.

O lado esquerdo da figura 2.7 mostra uma barra sem solicitação que possui comprimento inicial ℓ_0 e seção transversal S.

Figura 2.7 Barra prismática sob ação de uma carga **F**.

ε: épsilon, letra doalfabeto grego.

Aumentando gradativamente o valor da força axial F, a barra tende a se deslocar no mesmo sentido da força. A variação entre as dimensões inicial e final é denominada alongamento ou deformação ($\Delta \ell$).

Define-se deformação unitária ε como a relação entre o alongamento $\Delta \ell$ e o comprimento inicial ℓ_0 da barra.

$$\varepsilon = \frac{\Delta \ell}{\ell_0} \left(\frac{\mathsf{m}}{\mathsf{m}}; \frac{\mathsf{mm}}{\mathsf{mm}} \right)$$

Portanto, E é adimensional, comumente apresentado em porcentagem (%) e designado apenas como deformação.

Admitindo distribuição uniforme da força F na seção transversal, todo o elemento será solicitado por uma tensão normal σ , que define a relação entre a força normal atuante e a seção transversal.

Portanto,
$$\sigma = \frac{P}{S} \left(\frac{N}{mm^2}; \frac{N}{m^2}; \frac{kgt}{mm^2} \dots \right)$$

Em função de ensaios mecânicos específicos nos materiais, como o ensaio de tração (realizado em máquinas de tração), obtemos os gráficos de tensão por deformação para determinado material.

O ensaio de tração consiste em submeter um material de geometria padrão (normalmente denominado corpo de prova) a esforços de tração, de modo que o material alongue até a ruptura.

Os diagramas $a \in b$ da figura 2.8 mostram esquematicamente dois gráficos de tensão por deformação, respectivamente para materiais dúcteis (2.8a) e frágeis (2.8b).

Ao observar esses gráficos, nota-se que existe uma região denominada zona elástica ou linear elástica. Em 1678, Robert Hooke constatou que, nessa região, existia relação de forma linear entre tensão e deformação para o trecho OP, ou seja, a tensão é proporcional à deformação.

A região de escoamento ou zona de deformação plástica (3) é observada apenas para materiais dúcteis. Nessa região, o material não retorna a sua forma original caso o carregamento seja removido.

Mais informações sobre esse assunto podem ser obtidas no capítulo 4, de Ensaios Mecânicos dos Materiais.

-σ: sigma, letra do alfabeto grego.

Figura 2.8

a) Gráfico de tensão por deformação para materiais dúcteis; b) gráfico de tensão por deformação para materiais dúcteis frágeis

2.2.2 Propriedades mecânicas

Os diagramas da figura 2.8 possuem distintas regiões:

- Limite ou tensão de proporcionalidade (σ_p): é o maior valor de tensão, para o qual ainda é mantida a relação linear entre a tensão e a deformação (lei de Hooke). Região (1) indicada na figura 2.8.
- Tensão limite de escoamento (σ_e): é o maior valor de tensão para que, caso a carga seja removida, o material retorne à sua geometria original sem apresentar deformações residuais.
- Limite de resistência ou tensão de ruptura (σ_r): é a máxima tensão que o material suporta antes de romper-se. Corresponde ao ponto R nos diagramas da figura 2.8.
- Módulo de elasticidade (Ε): é a relação constante entre os valores de tensão (σ) e de deformação (ε) na fase elástica do material.

A figura 2.9 mostra um gráfico de tensão por deformação apenas da região linear elástica (proporcional). Podemos obter o módulo de elasticidade desse material por:

tg
$$\alpha = \frac{\overline{AB}}{\overline{OB}} = \frac{\sigma}{\epsilon} = E$$
 constante para esse material.

Assim, cada material possui um módulo de elasticidade. Para a maioria dos materiais, podemos encontrar o valor do módulo de elasticidade em literaturas como:

1. BRADY, G.S.; CLAUSER, H. R.; VACCARI, J. A. *Materials handbook*. 15. ed. Nova York: McGraw-Hill, 2002.

2. CALLISTER JÚNIOR, W. D. *Ciência e engenharia dos materiais* – uma introdução. Rio de Janeiro: LTC, 2008.

Figura 2.9

Detalhe da região linear elástica no gráfico de tensão por deformação.

 Coeficiente de Poisson (v) é a relação entre a deformação tr gitudinal (ou axial). Para muitos materiais seu valor está cor 0,25 e 0,35.

2.2.3 Considerações gerais

As propriedades descritas até o momento apenas são válidas se rem homogêneos e isotrópicos, ou seja, se tiverem propriedade todo o seu volume e em qualquer direção.

Um exemplo para distinguir homogêneo e isotrópico é a madeira, pois seu módulo de elasticidade possui valores diferentes para cada direção em função da orientação das fibras. Dessa forma, a madeira é homogênea, entretanto não é isotrópica.

2.3 Tensões admissíveis

A tensão admissível, representada por σ_{adm} ou $\overline{\sigma}$, é obtida dividindo-se o limite de escoamento (σ_{e}) para materiais dúcteis ou o limite de resistência (σ_{r}) para materiais frágeis por um número maior que a unidade, denominado **coeficiente de segurança** (ks).

Assim:

$$\sigma_{adm} = \frac{\sigma_{e}}{ks} \quad (dúcteis)$$

$$\sigma_{adm} = \frac{\sigma_{r}}{ks} \quad (frágeis)$$

Concluímos, então, que a tensão admissível (σ_{adm}) é a máxima tensão ou tensão ideal, utilizada para calcular estruturas ou elementos de máquinas com margem de segurança definida.

2.3.1 Coeficiente ou fator de segurança (ks)

Coeficientes de segurança são valores adotados para prevenir eventuais incertezas quanto a propriedades dos materiais, variações dos esforços aplicados etc. Sua determinação requer análise criteriosa das condições de utilização da estrutura, dispositivo ou máquina.

Mesmo em condições em que é possível prever o comportamento de estruturas ou máquinas, cujas condições dos carregamentos são especificadas, sempre há probabilidade de ocorrerem falhas. Existem inúmeros tipos de falhas. Citamos como exemplo trincas, anisotropia do material e sobrecarga que podem não estar previstas no projeto.

ansversal e a lon-	
npreendido entre	
	O símbolo v representa a letra
	minúscula do
e os materiais fo-	alfabeto grego denominada "nu".
es constantes em	

No dimensionamento, se adotarmos um coeficiente de segurança muito baixo, estaremos solicitando o material ao máximo e teremos uma estrutura mais leve e mais econômica. Não sobrará, porém, margem suficiente para as situações imprevistas. Por outro lado, se adotarmos um coeficiente de segurança muito alto, essa solução nos levará a projetos antieconômicos ou pouco funcionais.

Alguns elementos que influenciam na determinação do coeficiente de segurança:

- a) natureza do material (frágil ou dúctil);
- b) tipo de solicitação;
- c) risco de morte e danos materiais;
- d) falha do material;
- e) concentração de tensões;f) possibilidade de carga acidental;
- g) tipo de equipamento acionado;
- g) tipo de equipamento acionado;
- h) aproximações introduzidas no cálculo;
- i) deterioração das propriedades dos materiais;
- j) variação das propriedades dos materiais.

De modo geral, o fator de segurança deve ser obtido em decorrência da utilização do dispositivo (estrutura, máquina, entre outros). Normalmente, para equipamentos de baixa responsabilidade, esse valor pode ser aproximado para a unidade. Há casos, entretanto, em que essa aproximação não pode ser feita, como o do cabo de aço que sustenta elevadores (de passageiros), que possui valor igual a 12,5 segundo a NBR NM207:1999 da Associação Brasileira de Normas Técnicas (ABNT).

A ABNT é o órgão competente para estipular os coeficientes de segurança de equipamentos mecânicos. Isso é realizado em documentos denominados **Normas Brasileiras (NBR**). Podemos citar como exemplo a norma técnica NBR 8 400, sob o título: "Cálculo de equipamento para levantamento e movimentação de cargas". Nesse documento são sugeridos os coeficientes de segurança de tais equipamentos.

Quando o coeficiente não é definido por norma, fica a critério do projetista determiná-lo, com base em sua experiência, na viabilidade técnica e financeira, assumindo, porém, a responsabilidade civil e profissional.

2.3.2 Tabela de tensões admissíveis

Como simples orientação, para materiais empregados em construções mecânicas, poderá ser utilizada a tabela 2.1, denominada **tabela de Bach**. Nela são considerados três tipos de carregamentos: estático, intermitente e alternado, conforme indicado na figura 2.10. A tabela fornece também as **tensões admissíveis** de tração, compressão, flexão e cisalhamento à torção para aços de diferentes ligas, para duas condições distintas de manufatura (laminado e trefilado).

		Aços										
		ABNT 1010		ABNT 1020		ABNT 1030		ABNT 1040		ABNT 1050		
		Lami- nado	Trefi- Iado	Lami- nado	Trefi- Iado	Lami- nado	Trefi- Iado	Lami- nado	Trefi- Iado	Lami- nado	Trefi- Iado	
σ _r		330	370	390	430	480	530	530	600	630	700	
σ_{e}		180	310	210	360	260	450	290	500	350	590	
Along % 10 cm		28	20	25	15	20	12	18	12	15	10	
НВ		95	105	111	121	137	149	149	170	179	197	
Solici- tação	Carreg.		Tensão admissível segundo Bach (MPa)									
	I	80	100	100	140	135	155	150	210	200	220	
$\overline{\sigma}_t$	2	50	65	65	90	85	100	95	135	125	145	
	3	35	45	45	65	60	75	70	90	80	100	
	I.	80	100	100	140	135	155	150	210	200	220	
$\overline{\sigma}_{c}$	2	50	65	65	90	85	100	95	135	125	145	
	3	35	45	45	65	60	75	70	90	80	100	
	I	85	110	110	150	145	170	165	230	220	240	
$\overline{\sigma}_{f}$	2	55	70	70	100	95	110	105	150	140	160	
	3	40	50	50	70	65	80	75	105	95	115	
$\overline{\tau}_t$	I	50	65	65	85	80	100	95	125	115	135	
	2	30	40	40	55	50	65	60	80	70	90	
	3	20	30	30	40	35	50	45	60	50	70	

em que:

 σ_r = tensão de ruptura

- σ_e = tensão de escoamento
- σ_t = tensão admissível à tração
- σ_{c} = tensão admissível à compressão
- $\sigma_{\rm f}$ = tensão admissível à flexão
- τ_t = tensão admissível à torção

Tabela 2.I

Tabela de Bach. Fonte: http://www. demec.ufmg.br/grupos/ labprojmec/bach.htm>

2.4 Diagrama dos esforços internos solicitantes

Esse diagrama tem como objetivo determinar a seção crítica da estrutura, ou seja, localizar a seção de maior solicitação, a fim de dimensioná-la.

2.4.1 Diagrama da força normal

Considere uma barra prismática (de seção transversal constante) carregada na extremidade por uma força axial, conforme indicado na figura 2.11. Essa força axial é aplicada no centro de gravidade da seção transversal.

Ao aplicar a carga, obtém-se determinada deformação da barra, de modo a aumentar ou reduzir seu comprimento.

Dizemos que a barra é tracionada quando a força é dirigida para fora da barra, ou comprimida no sentido contrário.

Figura 2.11

Barra prismática de seção transversal constante, sujeita a uma carga de tração ou compressão.

Por convenção, a representação dos esforços de tração, nos diagramas de força normal, é dada no lado superior à linha neutra e tem valor positivo. No caso dos esforços de compressão faz-se o inverso (no lado inferior à linha neutra e tem valor negativo).

Considere uma barra engastada solicitada à tração, conforme indicado no diagrama *a* da figura 2.12. Se cortarmos a barra a uma distância x do engastamento (A) e mantivermos os esforços que agiam antes do corte na barra, o lado esquerdo (I) e o lado direito (II) permanecerão em equilíbrio, como mostram os diagramas *a* e *b* da figura 2.12.

Para manter os lados (I) e (II) em equilíbrio, será necessário aplicar na seção C, esforços internos. Esses esforços são forças internas de mesma direção e módulo, porém com sentido contrário à força externa F.

A essa força interna com direção axial denominamos força normal (N).

Por meio da variável x, pode-se analisar todas as seções transversais da barra.

Portanto, para qualquer valor de x, teremos N = F, tracionando tanto a parte do lado esquerdo quanto a parte do lado direito.

Traça-se, então, o diagrama com N = F, constante em toda a extensão da barra e com sinal positivo, pois se trata de tração. Esse diagrama pode ser observado na figura 2.13.

Exemplo

Traçar o diagrama da força normal (N), do carregamento para a estrutura proposta no diagrama a da figura 2.14.

O carregamento simplificado pode ser observado no diagrama b.

Solução

Considerando que o apoio B é fixo, determinamos a reação X_{B} .

 $\sum F_x = 0 \implies x_B - 600 + 200 = 0 \implies x_B = 400 \text{ N}$

CAPÍTULO 2

Figura 2.13

Figura 2.12

Barra de seção

transversal constante

solicitada à tração.

Diagrama da força normal para uma barra sujeita à tração.

Como X é variável, analisaremos os intervalos AC, CD e DB.

O trecho $AC \Rightarrow N = 0$ O trecho $CD \Rightarrow N = -200 \text{ N}$ (compressão) O trecho $DB \Rightarrow N = 400 \text{ N}$ (tração)

Dessa forma, obtemos o diagrama da força normal conforme indicado no diagrama c da figura 2.14.

Conclui-se que a seção mais solicitada é de 400 N à tração no trecho de D até B.

2.4.2 Diagrama da força cortante e do momento fletor

Convenções de sinais

O momento fletor é positivo quando tende a tracionar as fibras inferiores da parte analisada, e negativo se tracionar as fibras superiores. Esquematicamente, isso pode ser observado na figura 2.15.

Figura 2.15 Convenção de sinais para momento fletor.

A força cortante é positiva se girar o elemento em análise no sentido horário, caso contrário é negativo. Essa convenção de sinais é indicada na figura 2.16.

Elaboração dos diagramas

Consideremos uma viga em balanço solicitada pela carga concentrada P na extremidade livre B, conforme a figura 2.17.

Determinamos as expressões das forças cortantes (Q) e momento fletor (M).

Inicialmente, calculamos as reações no apoio A engastado.

$$\sum F_{y} = 0 \implies -P + y_{A} = 0 \implies y_{A} = P$$

$$\sum M_{A} = 0 \implies -M_{A} + P \cdot \ell = 0 \implies M_{A} = P \cdot \ell$$

Secionamos a barra a uma distância x da extremidade B, conforme mostra a figura 2.18, mantendo os esforços que agiam anteriormente ao corte, de modo que as duas partes (I) e (II) permaneçam em equilíbrio.

Figura 2.16 Convenção de sinais

para força cortante.

Figura 2.17 Viga em balanço sob

carga concentrada P.

Figura 2.18

Diagrama de corpo livre para estrutura proposta.

Analisamos, então, a força cortante (Q) e o momento fletor (M) na seção C.

Lado esquerdo (I) \Rightarrow	$Q = -P$ $M = -P \cdot x$	(gira a parte I no sentido anti-horário) (traciona as fibras superiores da barra)
Lado direito (II) ⇒	$\Omega = -P$	(gira a parte II no sentido anti-horário)

 $M = -P \cdot x$ (traciona as fibras superiores da barra)

Para determinarmos M do lado direito, impomos a condição $\Sigma M_A = 0$, como se fosse um carregamento com cargas externas.

$$\sum M_A = M + P(\ell - x) - P \cdot \ell = 0$$
$$M + P \cdot \ell - P \cdot x - P \cdot \ell = 0$$
$$M = P \cdot x$$

A força cortante (Q) e o momento fletor (M) do lado esquerdo (I) e lado direito (II) são iguais, isto é, o resultado independe do lado analisado. A escolha do lado, portanto, deve ser a mais conveniente.

Os diagramas – de corpo livre (a), da força cortante (b) e do momento fletor (c) - são apresentados na figura 2.19. Note que a força cortante (Q) é constante e negativa em toda a extensão, porque tende a girar no sentido anti-horário. O momento fletor (M) é uma função linear, com valor máximo no engastamento, e tem valor negativo porque traciona as fibras superiores da barra.

Figura 2.19

a) Diagrama de corpo livre; b) diagrama da força cortante; c) diagrama do momento fletor.

Exemplos

1. Determinar as expressões de Q e M e construir os respectivos diagramas para uma viga simplesmente apoiada, conforme figura 2.20.

Solução

Nesse caso, é necessário inicialmente determinar as reações de apoio y_A e y_B. Usamos as equações de equilíbrio:

1)
$$\sum F_y = 0 \Rightarrow y_A + y_B - 30 = 0 \Rightarrow y_A + y_B = 30 \text{ kN}$$

2) $\sum M_A = 0 \Rightarrow y_B \cdot 3 - 30 \cdot 1 = 0 \Rightarrow y_B \cdot 3 = 30 \Rightarrow y_B$
3) $\sum M_B = 0 \Rightarrow -y_A \cdot 3 + 30 \cdot 2 = 0 \Rightarrow -y_A \cdot 3 = -60 \Rightarrow$

A equação 1 é redundante e foi utilizada apenas para verificação dos resultados obtidos $y_A e y_B$.

Consideremos agora uma seção distante x da extremidade A até a carga concentrada de 30 kN, isto é, compreendida no intervalo 0 < x < 1 m.

Secionando a barra distante x da extremidade A e mantendo os esforços que agiam anteriormente ao corte, obtemos os respectivos diagramas de corpo livre, conforme indicado na figura 2.21.

No intervalo observado no setor I, a força cortante (Q) é positiva, porque tende a girar a barra no sentido horário, e o momento fletor também é positivo, pois traciona as fibras inferiores.

Figura 2.20

Esboço de uma viga simplesmente apoiada para exemplo 1.

= 10 kN

 $y_A = 20 \text{ kN}$

Figura 2.21 Diagramas de corpo

livre para exemplo 1.

Dessa forma, para
$$0 < x < 1 \text{ m}$$
 $\begin{vmatrix} Q = 20 \text{ kN} \\ M = 20 \cdot x \end{vmatrix}$

O mesmo poderia ser realizado para o setor II. Embora o resultado obtido necessariamente seja o mesmo, ele fica como proposta de exercício.

Analisando o intervalo de 1 m < x < 3 m, obtemos o diagrama de corpo livre como indicado pela figura 2.22.

Figura 2.22 Diagramas de corpo livre para exemplo 1, para

Figura 2.23

b) diagrama da

força cortante; c) diagrama do

momento fletor.

a) Diagrama de corpo livre;

intervalo de | m < x < 3 m.

Como a análise pode ser realizada para qualquer setor, é escolhido por conveniência o setor II. Portanto, para 1 m < x < 3 m | Q = -10 kN M = 10 (3 - x) = -10x + 30

A representação gráfica é indicada nos diagramas a, b e c da figura 2.23, respectivamente diagrama de corpo livre, diagrama da força cortante e diagrama do momento fletor.

30 kN 20 kN 10 kN a) 2 m 1 m 20 kN.m b) -10 kN 20 kN c)

O diagrama da força cortante é formado de dois trechos de reta, horizontais.

 1° trecho \Rightarrow 0 < x < 1 m \Rightarrow Q = 20 kN

2<u>°</u> –10 kN Observe que, nos pontos de aplicações de cargas concentradas, há uma descontinuidade correspondente ao valor da carga aplicada.

O diagrama do momento fletor também é constituído por dois trechos de reta, mas não apresenta nenhuma descontinuidade.

 1° trecho $\Rightarrow 0 \le x \le 1$ m \Rightarrow M = 20x

Como a função de M é linear, bastam dois pontos para definir a reta.

Assim, para $x = 0 \Rightarrow M = 0$ e para x = 1 m $\Rightarrow M = 20 \cdot 1 = 20$ kN \cdot m

 $2^{\circ} \text{ trecho} \Rightarrow 1 \text{ m} \le x \le 3 \text{ m} \Rightarrow M = -10x + 30$

Como o momento é uma função linear, para

 $x = 1 \text{ m} \Rightarrow M = -10 \cdot 1 + 30 = 20 \text{ kN} \cdot \text{m}$

e para $x = 3 \text{ m} \Rightarrow M = -10 \cdot 3 + 30 = 0 \text{ kN} \cdot \text{m}.$

2. Determinar as expressões de Q e M e construir os respectivos diagramas no carregamento com cargas concentradas, conforme indicado na figura 2.24.

Solução

Inicialmente, obtemos as reações nos apoios A e B, utilizando as equações da estática.

1)
$$\sum F_x = 0 \implies y_A + y_B - 2 - 1, 5 - 2, 5 = 0 \implies y_A + y_B = 6$$

2) $\sum M_A = 0 \implies y_B \cdot 11 - 2, 5 \cdot 7 - 1, 5 \cdot 4 - 2 \cdot 2 = 0 \implies$
 $\implies y_B \cdot 11 - 17, 5 - 6 - 4 = 0 \implies y_B \cdot 11 = 27, 5 \implies$
 $\implies y_B = \frac{27, 5}{11} \implies y_B = 2, 5 \text{ kN}$

trecho
$$\Rightarrow$$
 1 m < x < 3 m \Rightarrow Q =

Figura 2.24

Esboço de carregamento com cargas concentradas (exemplo 2).

kΝ

Substituindo y_B na equação 1, temos:

 $y_{A} + 2,5 = 6 \implies y_{A} = 3,5 \text{ kN}$

Obtidas as reações de apoio, podemos determinar a força cortante (unidade em kN). Usando o mesmo critério aplicado no exemplo 1, temos:

- para $0 < x < 2 \text{ m} \Rightarrow Q = 3.5 \text{ kN}$
- para $2m < x < 4m \implies Q = 3,5 2 = 1,5 \text{ kN}$
- para $4 \text{ m} < x < 7 \text{ m} \Rightarrow Q = 3,5 2 1,5 = 0$
- para 7 m < x < 10 m \Rightarrow Q = 3,5 2 1,5 2,5 = -2,5 kN

Observe que a força cortante (\mathbf{Q}) é constante entre duas cargas concentradas consecutivas e, na seção de apoio à direita, ela coincide com a reação, com sinal trocado.

Vejamos, agora, os momentos fletores (M), lembrando que as forças que tracionam as fibras inferiores produzem momentos fletores positivos. Assim:

- para $0 \le x \le 2m \implies M = 3, 5 \cdot x$
- para $2 \text{ m} \le x \le 4 \text{ m} \implies M = 3,5x 2(x 2)$
- para $4 \text{ m} \le x \le 7 \text{ m} \implies M = 3,5x 2(x 2) 1,5(x 4)$
- para 7 m \le x \le 11 m \Rightarrow M = 3,5x 2(x 2) 1,5(x 4) 2,5(x 7)

Como todas as expressões são funções lineares, conclui-se que o diagrama de momentos é constituído por quatro segmentos de reta. Assim, basta calcular os valores do momento nas seções em que existem cargas concentradas:

- para $x = 0 \implies M = 0$
- para $x = 2 m \implies M = 3, 5 \cdot 2 = 7 kN \cdot m$
- para $x = 4 \text{ m} \implies M = 3, 5 \cdot 4 2(4 2) = 10 \text{ kN} \cdot \text{m}$
- para $x = 7 \text{ m} \implies M = 3, 5 \cdot 7 2(7 2) 1, 5(7 4) = 10 \text{ kN} \cdot \text{m}$
- para $x = 10 \text{ m} \implies \text{M} = 0$

A representação gráfica pode ser visualizada nos diagramas a, $b \in c$ da figura 2.25, que são, respectivamente, diagrama de corpo livre, diagrama da força cortante e diagrama do momento fletor.

3. Determinar as expressões de Q e M e construir os respectivos diagramas na viga solicitada, com carga uniformemente distribuída, conforme figura 2.26a.

Solução

Inicialmente, substituímos a carga distribuída por uma carga equivalente concentrada em seu centro de gravidade, como mostra a figura 2.26b.

 $P = p \cdot \ell = 5 \cdot 2 = 10 \text{ kN}$

Substituindo o carregamento original pelo simplificado, obtemos as reações nos apoios $y_A e y_B$ de valor igual a 5 kN.

Voltando ao carregamento original, se cortássemos a viga em uma seção distante x do apoio A, conforme mostra a figura 2.27a, poderíamos elaborar o diagrama de corpo livre de modo a equilibrar tal setor, como indicado na figura 2.27b.

CAPÍTULO 2

Figura 2.25

a) Diagrama de corpo livre; b) diagrama da força cortante; c) diagrama do momento fletor.

Unidades de Q em kN

Unidades de M em kN · m

Figura 2.26

a) Esboço de carga distribuída; b) substituição da carga distribuída por equivalente.

Figura 2.27

a) Indicação da seção de corte; b) diagrama de corpo livre.

Sabendo que a carga distribuída de comprimento X é determinada pela expressão:

 $P_x = p \cdot x = 5 \cdot x$, podemos obter as expressões de Q e M a uma distância x da extremidade A.

Assim, do lado esquerdo do carregamento, temos:

$$Q = 5 - P_x = 5 - 5x \implies Q = -5x + 5$$
$$M = 5 \cdot x - P_x \cdot \frac{x}{2} = 5x - 5x \cdot \frac{x}{2} \implies M = -2, 5x^2 + 5x$$

Como o momento fletor é uma função do 2º grau e a força cortante do 1º grau, podemos prever que se trata respectivamente de uma parábola e um segmento de reta.

Então, temos para a força cortante (Q):

$$Q = -5x + 5 \implies x = 0 \implies Q = 5 \text{ kN}$$

 $x = 2 m \implies Q = -5 kN$

e para o momento fletor (M):

$$M = -2,5x^2 + 5x \implies x = 0 \implies M = 0$$

$$\mathbf{x} = 2 \,\mathbf{m} \implies \mathbf{M} = -2, 5 \cdot 2^2 + 5 \cdot 2 = 0$$

Obviamente, dois pontos não são suficientes para definir uma parábola. Sendo assim, como é sabido, em uma equação de segundo grau ($y = ax^2 + bx + c$), se a < 0, a concavidade da parábola é voltada para baixo e o ponto de máximo ocorre quando

$$x = -\frac{b}{2a} = -\frac{5}{2(-2,5)} = 1m$$

ou simplesmente determinando a condição para a qual a função da cortante é igual a zero.

Assim,
$$Q = -5x + 5 = 0 \implies x = 1m$$
.

Pode-se determinar o valor máximo de M substituindo x = 1 m, na expressão:

$$M = -2,5x^{2} + 5x = -2,5 \cdot 1^{2} + 5 \cdot 1 = 2,5 \text{ kN} \cdot \text{m}$$

Com os pontos: $x = 0 \implies M = 0$

 $x = 2 m \implies M = 0$

 $x = 1m \implies M = 2,5 \text{ kN} \cdot m$

Incluindo a informação de que a concavidade de M, quando x = 1 m, é voltada para baixo, podemos traçar os diagramas de corpo livre (a), da força cortante (b) e do momento fletor (c), conforme figura 2.28.

4. Traçar os diagramas da força cortante (Q) e do momento fletor (M) no carregamento proposto pela figura 2.29.

Figura 2.28

a) Diagrama de corpo livre; b) diagrama da força cortante; c) diagrama do momento fletor.

Figura 2.29

Esboço da força cortante e do momento fletor do exemplo 4.

Solução

No início, substituímos a carga uniformemente distribuída pela resultante e calculamos as reações nos apoios A e B.

1) $\sum F_v = 0 \implies y_A + y_B - 2 - 6 = 0 \implies y_A + y_B = 8 \text{ kN}$ 2) $\sum M_{A} = 0 \implies y_{B} \cdot 4 - 6 \cdot 2 + 2 \cdot 1 = 0 \implies y_{B} \cdot 4 - 12 + 2 = 0 \implies$ \Rightarrow y_B · 4 = 10 \Rightarrow y_B = 2,5 kN

Substituindo, obtemos: $y_A + 2,5 = 8 \Rightarrow y_A = 5,5 \text{ kN}$

Calculadas as reações de apoio, determinamos Q e M.

Força cortante (**Q**):

- $0 < x < 1m \implies Q = -2 kN$
- $1m < x < 2m \implies Q = 3,5 \text{ kN}$
- $4 \text{ m} < x < 5 \text{ m} \Rightarrow Q = -2,5 \text{ kN}$

Momento fletor (M):

- $0 \le x \le 1m \implies M = -2x$
- $1 \text{ m} \le x \le 2 \text{ m} \implies \text{M} = -2 \cdot x + 5, 5(x 1) = 3, 5x 5, 5$
- $4 \text{ m} \le x \le 5 \text{ m} \implies M = 2,5(5-x) = -2,5x + 12,5$

Para determinarmos a força cortante e o momento fletor no intervalo em que está a carga distribuída, precisamos analisar uma seção que esteja contida nesse trecho, como sugerido pela figura 2.30.

Figura 2.30 Trecho sugerido para análise da força cortante.

Então, para $2 m \le x \le 4 m$, temos:

• o momento fletor (M) distante x da extremidade da barra de:

$$M = -2x + 5,5(x - 1) - 3(x - 2)\left(\frac{x - 2}{2}\right) \implies$$
$$\Rightarrow M = -2x + 5,5x - 5,5 - \frac{3}{2}(x - 2)^{2} \implies$$
$$\Rightarrow M = -2x + 5,5x - 5,5 - 1,5(x^{2} - 4x + 4) \implies$$
$$\Rightarrow M = -1,5x^{2} + 6x + 5,5x - 2x - 5,5 - 6 \implies$$
$$\Rightarrow M = -1,5x^{2} + 9,5x - 11,5$$

• e a força cortante Q, para 2m < x < 4m, de:

$$Q = -2 + 5, 5 - 3(x - 2) = -3x + 6 - 2 + 5, 5 \Longrightarrow Q = -3x$$

Como a força cortante (Q) é uma função linear, bastam dois pontos para definir a reta.

Tomemos: $x = 2 m \implies Q = -3 \cdot 2 + 9, 5 = 3,5 \text{ kN}$

$$x = 4 \text{ m} \implies Q = -3 \cdot 4 + 9, 5 = -2, 5 \text{ kN}$$

O diagrama do momento fletor é uma parábola com concavidade voltada para baixo, e seu ponto máximo ocorre quando:

 $Q = 0 \implies -3x + 9, 5 = 0 \implies x = 3,167 \text{ m}.$

Substituindo na função M, $M = -1,5x^2 + 9,5x - 11,5$, temos:

$$M_{max} = -1.5 \cdot (3.167)^2 + 9.5 \cdot 3.167 - 11.5$$

$$M_{max} = -15,04 + 30,09 - 11,5 = 3,55$$

portanto, quando $x = 3,167 \text{ m} \Rightarrow M_{\text{máx}} = 3,55 \text{ kN} \cdot \text{m}.$

Dessa forma, possuímos todos os dados necessários para elaborar os diagramas de corpo livre (a), força cortante (b) e momento fletor (c), indicados na figura 2.31.

A força cortante pode ser obtida também derivando a função do momento:

$$Q = \frac{dM}{dx} = -3x + 9,5$$

Figura 2.31 Exemplo 4: a) diagrama de corpo livre; b) diagrama da força cortante; c) diagrama do momento fletor.

5. Para a estrutura formada por barras, conforme indicado na figura 2.32, determinar os diagramas dos esforços internos solicitantes N, Q e M.

Solução

Inicialmente, determinaremos as reações de apoios.

1) $\sum M_A = 0 \implies y_B \cdot 30 + 300 \cdot 10 = 0 \implies y_B = -100 \text{ N}$ 2) $\sum M_{B} = 0 \implies -y_{A} \cdot 30 + 300 \cdot 10 = 0 \implies y_{A} = 100 \text{ N}$ 3) $\sum F_v = 0 \implies y_A + y_B = 0$ 4) $\sum F_x = 0 \implies x_B - 300 = 0 \implies x_B = 300 \text{ N}$

O diagrama de corpo livre pode ser observado na figura 2.33.

Na barra CD, temos:

- força cortante Q = -300 N;
- momento fletor (M) tracionando as fibras do lado direito, que tomaremos como positivo.
- portanto, $M = 300 \cdot x$.

A referência dessa variável x é o ponto D com direção vertical descendente.

Para analisar a barra AB, é necessário transportar a carga concentrada de 300 N, aplicada em D, para o ponto C.

Observe que, ao transportarmos a carga para o ponto C, devemos incluir o momento que ela promove em relação a tal ponto, esquematicamente ilustrado na figura 2.34.

Os esforços internos solicitantes para a barra CD podem ser observados nos diagramas de força cortante (a) e no do momento fletor (b). A figura 2.36 mostra os diagramas de força normal (a), cortante (b) e momento fletor (c) para a barra AB.

Conclusão: a força cortante é constante ao longo da viga, e o momento fletor é representado por dois segmentos de reta paralelos com uma descontinuidade no ponto C de M = $3000 \text{ N} \cdot \text{cm}$, equivalente à aplicação do momento externo em AB, no ponto C.

Figura 2.32 Exemplo 5: estrutura formada por barras.

Figura 2.34 Diagrama de corpo livre equivalente.

Figura 2.33

Diagrama de corpo livre.

Figura 2.36

a) Diagrama de força normal;b) diagrama de força cortante;c) diagrama de momento fletor.

2.4.3 Diagrama do momento torçor

Diz-se que uma barra está solicitada à torção quando está submetida a um momento torçor no plano da seção transversal.

A viga possui seção circular constante e está sob ação de um par de forças paralelas de mesma intensidade e sentidos opostos (binário de intensidade igual a F), atuando no plano da seção transversal.

O momento torçor (M_t) para essa situação é igual ao produto da força (F) pela distância (d).

Convenção de sinal

O momento torçor (M_t) é um esforço interno solicitante. Dessa forma, para a condição indicada, substituímos o binário por um momento equivalente M_{te} (momento torçor externo), uma vez que a barra está sujeita apenas a esse carregamento. Para que a barra esteja em equilíbrio deve haver um momento torçor resistente M_{tr} de mesmo valor e oposto a ele.

Vamos, então, definir a convenção de sinais.

Se cortássemos a seção a uma distância x do engastamento e mantivéssemos os esforços que agiam antes do corte, o lado esquerdo (I) e direito (II) continuariam em equilíbrio, conforme indicado na figura 2.37.

Observe que o momento torçor (M_t) nos lados I e II tende a girar a seção da viga em C no sentido horário, que convencionamos como positivo; no sentido contrário, como negativo. O diagrama do momento torçor é mostrado na figura 2.38. Notamos que neste caso é positivo e constante em toda a viga.

Exemplo

No eixo solicitado conforme figura 2.39, construir o diagrama do momento torçor.

Figura 2.37

Convenção de sinais para momento torçor.

Figura 2.38 Diagrama do momento torçor.

Figura 2.39

Esboço do exemplo de momento torçor.

Trecho AC \Rightarrow M_t = 20 N · m (constante)

Trecho CB \Rightarrow M_t = -30 N · m (constante)

Observe que no ponto C temos uma descontinuidade de $M_t = 50 \text{ N} \cdot \text{m}$, equivalente ao momento externo de 50 N \cdot m.

2.5 Tração e compressão

2.5.1 Tensão normal

O conceito de tensão normal foi abordado na seção 2.1.1 (Classificação dos esforços). Sendo assim é sabido que, para um elemento prismático sujeito a uma força normal de tração, a intensidade da tensão normal (o) será:

$$\sigma = \frac{N}{S}$$
 (MPa; $\frac{\text{kgf}}{\text{mm}^2}$;...)

em que:

S = Area da seção transversal (m²; mm²; ...)N = Força normal (kN; kgf, ...)

As tensões de tração que atuam em determinado elemento serão representadas por σ_{t} , e as de compressão, por σ_{c} .

No Sistema Internacional, a força P é expressa em newtons (N), a área S em metros quadrados (m²) e a tensão σ em (N/m²), unidade denominada pascal (Pa).

O uso prático da unidade pascal é muito restrito. São utilizados, então, múltiplos dessa unidade, como quilopascal (kPa), megapascal (MPa) e gigapascal (GPa).

$$1 \text{ kPa} = 10^{3} \text{ Pa} = 10^{3} \frac{\text{N}}{\text{m}^{2}}$$
$$1 \text{ MPa} = 10^{6} \text{ Pa} = 10^{6} \frac{\text{N}}{\text{m}^{2}}$$
$$1 \text{ GPa} = 10^{9} \text{ Pa} = 10^{9} \frac{\text{N}}{\text{m}^{2}}$$

2.5.2 Módulo de elasticidade

O módulo de elasticidade foi previamente definido na seção 2.2.2. Com base nos gráficos de tensão por deformação, foi constatada uma região linear (região proporcional) cuja tangente do ângulo formado entre o segmento de reta e o eixo

das deformações possui o mesmo valor numérico que o módulo de elasticidade (ver seção 2.2.2, figura 2.9). Dessa forma:

$$tg\alpha = \frac{AB}{OB} = \frac{\sigma}{\epsilon} = E \Longrightarrow \ tg \ \alpha \ = E$$

A deformação unitária (E) para uma barra foi definida como a relação de sua variação dimensional $(\Delta \ell)$ em função de seu comprimento inicial (ver seção 2.2.2). Sendo assim:

$$\varepsilon = \frac{\Delta \ell}{\ell_0}$$
. Sabendo que $\sigma = \frac{F}{S}$, $\varepsilon = \frac{\Delta \ell}{\ell}$ e substituindo em E

obtemos a seguinte relação:
$$E = \frac{\frac{F}{S}}{\frac{\Delta \ell}{\ell}} = \frac{F \cdot \ell}{S \cdot \Delta \ell}$$

Dessa forma, o alongamento total (variação dimensional) é dado por:

$$\Delta \ell = \frac{\mathsf{F} \cdot \ell}{\mathsf{E} \cdot \mathsf{S}} \pmod{\mathsf{mm}}$$

2.5.3 Dimensionamento de peças

No dimensionamento, impomos a condição:

$$\sigma = \frac{F}{S} \leq \sigma_{adm}$$
, sendo: σ_{adm} , a tensão admissível (MPa).

Para a condição de mínimo custo, recomenda-se que as máximas tensões atuantes sejam iguais às admissíveis.

$$\sigma = \frac{F}{S} = \sigma_{adm}$$

Exemplos

1. Um fio de aço de comprimento de 251 mm e diâmetro de 1 mm foi submetido a uma carga de tração de 300 N, conforme indicado na figura 2.40. Como resultado desse carregamento observa-se um alongamento de 0,48 mm. Sabendo que sob essas condições o material não ultrapassa a tensão de proporcionalidade, determinar o valor da tensão normal e a deformação unitária porcentual.

 $\frac{1}{\epsilon} = \frac{\sigma}{\epsilon},$

Dados: $\ell_0 = 251$ mm; d = 1 mm; F = 300 N e $\Delta \ell = 0.48$ mm

A área de seção é:
$$S = \frac{\pi d^2}{4} = \frac{\pi 1^2}{4} = 0,785 \text{ mm}^2$$

A tensão é: $\sigma = \frac{F}{S} = \frac{300}{0,785} = 382,2 \Rightarrow \sigma = 382,2 \text{ MPa}$

A deformação porcentual é:
$$\varepsilon = \frac{\Delta \ell}{\ell_0} = \frac{0,48}{251} = 1,9 \cdot 10^{-3} \implies$$

$$\Rightarrow \varepsilon = 1,9 \cdot 10^{-3} \cdot 100\% = 0,19\% \Rightarrow \varepsilon = 0,19\%$$

2. Para o esquema de fixação apresentado na figura 2.41, determinar os diâmetros d e D, sabendo que a porca exerce no parafuso uma força axial de 8 kN.

Dados: parafuso: $\overline{\sigma}_{t} = 100 \text{ MPa}$; bucha: $\overline{\sigma}_{c} = 50 \text{ MPa}$; $d = d_{p} + \text{folga e}$ folga = 1mm

d = diâmetro interno da bucha D = diâmetro externo da bucha

Podemos notar que o parafuso está sujeito à tração (por causa de um prévio torque aplicado na porca). Assim, a dimensão do núcleo do parafuso (do) será:

$$\sigma = \frac{N}{S} \le \overline{\sigma_t} \implies S \ge \frac{N}{\sigma_t} = \frac{8\,000}{100} = 80 \text{ mm}^2$$
$$S = \frac{\pi \text{do}^2}{4} \ge 80 \implies \text{do} \ge \sqrt{\frac{4 \cdot 80}{\pi}} = 10, 1 \implies \text{do} \ge 10, 1 \text{ mm}$$

Sabemos que parafuso é um elemento normalizado e devemos escolher um que possua diâmetro do núcleo superior a 10,1 mm. Considerando que o parafuso M12 possui diâmetro nominal $d_p = 12$ mm, podemos determinar o diâmetro interno da bucha.

$$d = d_{p} + 1 = 12 + 1 = 13 \Longrightarrow d = 13 \text{ mm}$$

Os esforços de tração para o parafuso são transferidos para a bucha de modo a comprimi-la. Essa condição é esquematicamente ilustrada na figura 2.42.

CAPÍTULO 2

Figura 2.42 Esboço esquemático de bucha.

Dessa forma, podemos determinar o diâmetro externo da bucha por:

$$\sigma = \frac{\mathsf{F}}{\mathsf{S}} \le \overline{\sigma}_{c} \Longrightarrow \mathsf{S} \ge \frac{\mathsf{F}}{\sigma_{c}} = \frac{8\,000}{50} = 160$$

$$S = \frac{\pi \left(D^2 - d^2\right)}{4} \ge 160 \Longrightarrow \pi D^2 - \pi d^2 \ge 4 \cdot 160$$

 $\pi D^2 \ge 4 \cdot 160 + \pi d^2 = 4 \cdot 160 + \pi \cdot 13^2 = 640 + 530.9$

$$\pi D^2 \ge 1170, 9 \Longrightarrow D \ge \sqrt{\frac{1170,9}{\pi}} = 19, 3 \Longrightarrow D \ge 19, 3 \text{ mm}$$

Como o diâmetro externo deve ser maior que 19,3 mm, escolhemos arbitrariamente D = 20 mm.

2.6 Cisalhamento puro

As forças internas e suas respectivas tensões correspondentes, até o momento discutidas, são normais à seção transversal considerada. A tensão de cisalhamento ou tensão cisalhante ocorre quando há existência de carregamentos transversais.

A figura 2.43 mostra esquematicamente uma viga engastada em uma extremidade e solicitada por uma carga transversal P.

Para a condição indicada na figura 2.43, a força cortante (Q) e o momento fletor (M) no engastamento são, respectivamente:

 $Q = P e M = -P \cdot x$

Notamos que, à medida que o carregamento (P) se aproxima do engastamento, a distância (X) diminui. O momento fletor, sendo diretamente proporcional à distância, também diminui. Imaginando uma condição em que essa distância seja tão pequena, de tal forma que se possa considerar desprezível o momento fletor, a viga estará sujeita apenas à força cortante.

Dessa forma, podemos dizer que, se o esforço predominante que atua na seção transversal é a força cortante (Q), temos cisalhamento puro.

Durante o dimensionamento, em diversas ocasiões, podemos considerar o cisalhamento como cisalhamento puro. Por exemplo, em juntas rebitadas, chavetas, pinos etc. A figura 2.44 mostra esquematicamente alguns exemplos de situações em que o conceito de cisalhamento puro pode ser empregado.

2.6.1 Tensão de cisalhamento

Admitindo que a tensão de cisalhamento (τ) distribui-se uniformemente em toda seção transversal de área S em determinada estrutura, temos:

$$\tau = \frac{Q}{S}$$

No dimensionamento, limitam-se as tensões atuantes em relação à tensão admissível ao escoamento (τ_{adm}):

$$\tau = \frac{Q}{S} \leq \tau_{adm}$$

em que:

$$\tau_{adm} = \frac{\tau_{e}}{ks}$$

 τ_e = tensão de cisalhamento ao escoamento

ks = fator de segurança

A condição mais econômica se dará quando:
$$\tau = \frac{Q}{S} = \tau_{adm}$$

Existem casos em que o objetivo é cisalhar (cortar) o material para obter o produto desejado. A tensão de cisalhamento, então, deverá ser maior que a tensão de ruptura do material.

 $\tau = \frac{Q}{S} > \tau_{\mbox{\tiny rup}}$, em que: $\tau_{\mbox{\tiny rup}} =$ tensão de cisalhamento a ruptura

Figura 2.44

Exemplos de cisalhamento puro.

Exemplos

1. A junta com um pino, da figura 2.45, foi submetida a uma força externa (Q) de 40 kN. Admitindo a distribuição uniforme das tensões de cisalhamento nas seções, calcular o valor do diâmetro (d) do pino solicitado ao cisalhamento.

Dado: $\tau_{adm} = 50$ MPa.

Solução

Como temos duas seções solicitadas: $\tau = \frac{Q}{2S} \le \tau_{adm}$, em que S = área de uma se-

ção solicitada,
$$\frac{Q}{2S} \le \tau_{adm} \Rightarrow S \ge \frac{Q}{2 \cdot \tau_{adm}} = \frac{40 \cdot 10^3}{2 \cdot 50} = 400 \Rightarrow S \ge 400 \text{ mm}^2$$

$$S = \frac{\pi d^2}{4} \ge 400 \Rightarrow d^2 \ge \frac{4400}{\pi} \Rightarrow d \ge \sqrt{\frac{4400}{\pi}} = 22,6 \quad \therefore d \ge 22,6 \text{ mm}$$

2. Determinar a força de corte para estampar o furo mostrado na figura 2.46.

Figura 2.45

Esboço do exemplo 1.

Dados:

$$\tau_{rup} = 300 \frac{N}{mm^2}$$
; $e = espessura da chapa = 2,5 mm; \tau = \frac{Q}{S} > \tau_{rup}$

A seção (S) de cisalhamento denominamos S_{corte} , em que:

 $S_{corte} = perímetro de corte \cdot espessura de corte$

$$\begin{split} S_{corte} &= \left(2\cdot 20 + 2\pi \cdot 5\right) \cdot 2, 5 = 178, 5 \Longrightarrow S_{corte} = 178, 5 \ \text{mm}^2 \\ \\ \frac{Q}{S_{corte}} &> \tau_{rup} \Longrightarrow Q > \tau_{rup} \cdot S_{corte} = 300 \cdot 178, 5 \end{split}$$

Portanto, Q > 42840 N.

2.7 Flexão simples

Quando um elemento é solicitado a força transversal ou a um momento fletor, observa-se que os esforços internos devidos a esse carregamento não são apenas de cisalhamento.

Esses carregamentos fazem com que a barra tenda a se deformar, de modo que, para essa seção transversal, obtemos esforços internos de tração e compressão.

A teoria a ser desenvolvida deverá considerar que as forças e os momentos estejam em um plano e contenham o eixo da viga. Por hipótese, o plano que contém as forças perpendiculares ao eixo é um plano de simetria da seção da viga, conforme indicado na figura 2.47.

Figura 2.47 Localização de aplicação dos carregamentos.

2.7.1 Tipos de flexão

Quando uma barra solicitada à flexão apresenta apenas momento fletor, nas diferentes seções transversais, diz-se que a **flexão** é **pura**. Entretanto, se as seções são solicitadas, simultaneamente, por momento fletor e por força cortante, temos a **flexão simples**.

Por exemplo, no carregamento da figura 2.48, no trecho BC, temos somente momento fletor, portanto, trata-se de uma flexão pura. Já nos trechos AB e CD temos força cortante e momento fletor, portanto, uma flexão simples.

Figura 2.48 Exemplo de carregamento.

2.7.2 Tensões normais nas vigas

Vamos considerar uma viga formada por infinitas fibras longitudinais, como indicado no esboço *a* da figura 2.49. Antes de aplicar a carga, todas as fibras tinham o mesmo comprimento ℓ . Após a viga ser submetida à carga P (esboço *b* da figura 2.49), as fibras inferiores são tracionadas, ou melhor, seu comprimento aumenta, e as superiores são comprimidas, isto é, seu comprimento diminui.

Essas variações de comprimento dão origem a tensões normais (σ) nas fibras. As que alongam dão origem a tensões normais de tração. As que encurtam originam tensões de compressão.

Existe um conjunto de fibras que formam uma superfície plana não solicitadas quer a tração quer a compressão que denominamos **superfície neutra** ou **plano neutro**.

A interseção da superfície neutra com a seção transversal da viga é denominada **linha neutra** (LN) e, esquematicamente, pode ser observada na figura 2.50. A linha neutra passa pelo centro de gravidade da seção transversal.

CAPÍTULO 2

Figura 2.49

a) Viga composta por infinitas fibras sem carregamento;b) viga solicitada por um carregamento transversal.

Figura 2.50 Desenho esquemático indicando a linha neutra.

Em uma viga cuja seção transversal contém um eixo de simetria, e está solicitada a um momento fletor (M), ocorre a tensão normal (σ) em uma fibra que dista y da linha neutra, sendo igual a:

$$\sigma = \frac{M}{I} \cdot y$$
 , em que:

M = momento fletor

l = momento de inércia da seção transversal em relação à linha neutra (LN) (ver mais sobre momento de inércia na seção 2.11) y = distância da linha neutra até o ponto considerado

Os valores das tensões normais máximas ($\sigma_c e \sigma_t$) ocorrem nas fibras mais afastadas em relação à linha neutra (LN), como indicado na figura 2.51.

Temos, então:

$$\sigma_t = \frac{M}{I} \cdot y_1 = \frac{M}{\frac{I}{y_1}} = \frac{M}{W_1} \quad e \quad \sigma_c = \frac{M}{I}y_2 = \frac{M}{\frac{I}{y_2}} = \frac{M}{W_2}$$

2.7.3 Tensões de cisalhamento na flexão

Nas vigas solicitadas à força cortante (Q) aparecem tensões de cisalhamento (τ) nas seções transversais e longitudinais. A tensão de cisalhamento que atua na fibra que dista y da linha neutra é dada pela expressão

$$\tau = \frac{\mathbf{Q} \cdot \mathbf{M}_{s}}{\mathbf{b} \cdot \mathbf{I}}$$
, em que:

2.7.4 Dimensionamento de vigas

No dimensionamento, limitam-se as tensões atuantes em relação a tensões admissíveis ($\sigma_{adm} e \tau_{adm}$).

$$\sigma = \frac{M}{W} \leq \sigma_{adm} \quad \tau = \frac{Q \cdot M_{_S}}{b \cdot I} \leq \tau_{adm}$$

em que:

$$\sigma_{\text{adm}} = \frac{\sigma_{\text{e}}}{ks} \quad \tau_{\text{adm}} = \frac{\tau_{\text{e}}}{ks}$$

Como na maioria das aplicações a tensão de cisalhamento é desprezível em relação à tensão normal, para efeito de cálculo será considerada apenas a flexão pura.

Exemplos

1. Uma barra de aço ABNT 1040, engastada em uma das extremidades conforme indicado na figura 2.52, deverá suportar uma carga estática de 1 000 N concentrada na extremidade livre. Sabendo que seu comprimento é de 200 mm, calcular as tensões normal e de cisalhamento máximas.

Figura 2.52 Esboço do exemplo 1.

Solução

As fórmulas das tensões são: $\sigma = \frac{M}{W} e \tau = \frac{Q \cdot M_s}{b \cdot I}$

$$M = P \cdot L = 1000 \cdot 200 = 200000 \text{ N} \cdot \text{mm} = 2 \cdot 10^5 \text{ N} \cdot \text{mm}$$

$$I = \frac{b \cdot h^3}{12} \Longrightarrow I = \frac{12 \cdot 36^3}{12} \Longrightarrow I = 46\ 656\ mm^4$$

$$W = \frac{b \cdot h^2}{6} \Rightarrow W = \frac{12 \cdot 36^2}{6} \Rightarrow W = 2592 \text{ mm}^3$$

$$M_s = 12 \cdot 18 \cdot 9 = 1944 \text{ mm}^3$$

$$\sigma = \frac{M}{W} = \frac{2 \cdot 10^5}{2\,592} = 77,2 \quad e \ \tau = \frac{Q \cdot Ms}{b \cdot I} = \frac{1000 \cdot 1\,944}{12 \cdot 46\,656} = 3,5$$

Portanto, os valores das tensões são de:

$$\sigma = 77,2 \frac{N}{mm^2} \quad e \quad \tau = 3,5 \frac{N}{mm^2}$$

O valor da tensão normal (σ) é bem maior que a tensão de cisalhamento (τ).

2. Determinar as dimensões da viga de aço ABNT 1020 perfil I, no carregamento proposto na figura 2.53.

Dado:
$$\sigma_{adm} = 8, 4 \frac{kN}{cm^2}$$
.

Figura 2.53 Esboço do exemplo 2.

Solução

Reações de apoio:

1)
$$\sum F_y = 0 \Rightarrow y_A + y_B = 50$$

2) $\sum M_A = 0 \Rightarrow -50 \cdot 1, 2 + y_B \cdot 3 = 0 \Rightarrow y_B \cdot 3 = 60 \Rightarrow y_B = y_A = 50 - y_B = 50 - 20 \Rightarrow y_A = 30 \text{ kN}$

O momento fletor máximo ocorre a 1,2 m do apoio A e seu valor é:

$$M = 36 \cdot 1, 2 = 36 \text{ kN} \cdot \text{m}$$

Como foi visto, para dimensionar uma viga devemos impor:

$$\sigma = \frac{M}{W} \le \sigma_{\mathsf{adm}} \Longrightarrow W \ge \frac{M}{\sigma_{\mathsf{adm}}}$$

Substituindo os valores, obtemos:

$$W \ge \frac{36 \cdot 10^2}{8,4} \simeq 428,6$$

Portanto: $W \ge 428,6 \text{ cm}^3$

Com o módulo de resistência (W) calculado, consultando a tabela 2.2 na qual constam os valores de W, escolhemos uma seção com valor W um pouco superior.

Tabelas semelhantes à tabela 2.2 são encontradas em manuais, livros e, principalmente, em catálogos de fabricantes.

No caso analisado, a viga I escolhida possui $W = 442 \text{ cm}^3$, com dimensões b = 113 mm, h = 260 mm e c = 9,4 mm.

20 kN

77	Dimensões (mm)					C ~ .	D	E	ixo I-I		Eixo 2-2			
Perf	h	b	с	е	R	R	Seção cm ²	Peso kg/m	J cm⁴	W cm ³	ρ cm	J cm⁴	W cm ³	ρ cm
8	80	42	3,9	5,9	3,9	2,3	7,58	5,95	77,8	19,5	3,20	6,29	3,00	0,91
10	100	50	4,5	6,8	4,5	2,7	10,6	8,32	171	34,2	4,01	12,2	4,88	1,07
12	120	58	5,1	7,7	5,1	3,1	14,2	11,2	328	54,7	4,81	21,5	7,41	1,23
14	140	66	5,7	8,6	5,7	3,4	17,3	14,4	573	81,9	5,61	35,2	10,7	1,40
16	160	74	6,3	9,5	6,3	3,8	22,8	17,9	935	117	6,40	54,7	14,8	1,55
18	180	82	6,9	10,4	6,9	4,1	27,9	21,9	l 450	161	7,20	81,3	19,8	1,71
20	200	90	7,5	11,3	7,5	4,5	33,5	26,3	2140	214	8,00	117	26,0	I,87
22	220	98	8, I	12,2	8,1	4,9	39,6	31,1	3 060	278	8,80	162	33,1	2,02
24	240	106	8,7	13,1	8,7	5,2	46,1	36,2	4250	354	9,59	221	41,7	2,20
26	260	113	9,4	4,	9,4	5,6	53,4	41,9	5740	442	10,4	288	41,0	2,32
28	280	119	10,1	15,2	10,1	6, I	61,1	48,0	7 590	542	11,1	364	61,2	2,45
30	300	125	10,8	16,2	10,8	6,5	69,1	54,2	9800	653	11,9	451	72,2	2,56
32	320	131	11,5	17,3	11,5	6,9	77,8	61,1	12510	782	12,7	555	84,7	2,67
34	340	137	12,2	18,3	12.2	9,3	86,8	68,1	15700	927	13,5	6/4	98,4	2,80
36	360	143	13,0	19,5	13,0	7,8	97,1	76,2	19610	1 090	14,2	818	114	2,90
38	380	149	13,7	20,5	13,7	8,2	107	84,0	24010	1260	15,0	975	131	3,02
40	400	155	14,4	21,6	14,4	8,6	118	92,6	29210	I 460	15,7	1160	149	3,13
42,5	425	163	15,3	23,0	15,3	9,2	132	104	36970	1740	16,7	I 440	176	3,30
45	450	170	16.2	24.2	14.2	97	147	115	45.950	2040	171	1 720	202	2 / 2
1 3	475	170	10,2	24,3	10,2	7,7	147	115	00 CO CF	2 040	17,1	2,090	203	2 (0
47,5	4/5	1/8	17,1	25,6	17,1	10,3	103	128	2048U	2 380	10,0	2 4 9 0	235	3,00
50	500	185	18,0	27,0	18,0	10,8	180	141	00 100	2750	19,6	2480	268	3,72
55	550	200	19,0	30,0	19,0	11,9	213	16/	99180	3610	21,4	3 490	349	4,02
60	600	215	21,6	32,4	21,6	13,0	254	199	139000	4630	23,4	4670	434	4,30

Tabela 2.2

Propriedades e geometria para vigas de perfil 1.

2.8 Torção simples

2.8.1 Barras de seção circular

Quando o único esforço que solicita a barra é um momento torçor no plano da seção transversal, diz-se que a solicitação é de **torção simples**. Um exemplo de torção simples pode ser representado por uma viga engastada solicitada por um momento torçor, como indicado na figura 2.55.

As tensões que esse momento torçor provoca nas seções transversais são de **cisalhamento** (τ). O problema, então, consiste em determinar uma expressão que nos forneça essa tensão para qualquer ponto da seção transversal em função do momento torçor (M_t).

Vamos considerar uma barra de seção transversal circular constante, submetida ao momento de torção $M_{t},$ como mostra a figura 2.56. São admitidas as seguintes hipóteses:

As seções transversais permanecem planas durante a deformação.
 A tensão atuante é perpendicular ao raio r.

Figura 2.54 Dimensões do perfil I.

Figura 2.55

Viga em balanço solicitada por um momento torçor.

3) A variação da tensão ao longo do raio é linear ($\tau = \mathbf{k} \cdot \mathbf{r}$).

Para que haja equilíbrio, é necessário que a soma dos momentos dos esforços que atuam em toda a seção transversal em relação ao centro de gravidade seja igual ao momento torçor (M_t).

Deduz-se que a tensão de cisalhamento em um ponto qualquer da seção é dada pela expressão:

$$\tau = \frac{M_t}{I_p} \cdot r$$
 , em que:

 τ = tensão de cisalhamento no ponto de raio r

 M_t = momento torçor ou torque

 I_P = momento polar de inércia

Dedução da expressão para a tensão de cisalhamento

A tensão de cisalhamento τ poderia ser obtida com algum conhecimento de cálculo integral simples, como mostramos na dedução a título de curiosidade.

$$M_t = \int_{(S)} r \cdot dF$$

Porém, sabemos que: $\tau = \frac{dF}{dS}$

Nessa condição foi visto que a tensão de cisalhamento (τ) é uma função linear e dependente apenas do raio (r).

Substituindo na equação integral do momento torçor, temos:

$$M_t = \int\limits_{(S)} r \cdot dF = \int\limits_{(S)} r \cdot \tau \cdot dS = \int\limits_{(S)} r^2 \cdot k \cdot dS$$

Como:
$$S = \pi \cdot r^2 \rightarrow dS = 2\pi \cdot r \cdot dr$$

dessa forma:
$$M_t = \int_{(r)} \mathbf{k} \cdot \mathbf{r}^2 \cdot 2\pi \cdot \mathbf{r} \cdot d\mathbf{r} = 2 \cdot \mathbf{k} \cdot \pi \int_{(r)} \mathbf{r}^3 \cdot d\mathbf{r} = \mathbf{k} \cdot \mathbf{r}$$

Foi visto que o momento polar de inércia (I_P) é uma grandeza que depende apenas das características geométricas da seção transversal. Para uma seção circular, temos:

$$I_{p} = \frac{\pi \cdot r^{4}}{2} = \frac{\pi \cdot d^{4}}{32}$$

Concluímos que: $M_{t} = kI_{p} \implies k = \frac{M_{t}}{I_{p}}$
Substituindo na hipótese 3, temos: $\tau = kr = \frac{M_{t}}{I_{p}} \cdot r \quad \therefore \tau = kr$

A tensão máxima de cisalhamento ocorre quando $r = \frac{d}{2}$. Substituindo na

expressão (I), obtemos:
$$\tau_{máx} = \frac{M_t}{I_P} \cdot \frac{d}{2} = \frac{M_t}{W_t}$$
 em que:

$$W_t = m \delta du lo de resistência à torção $W_t = \frac{I_p}{\frac{d}{2}} = \frac{\frac{\pi d^3}{32}}{\frac{d}{2}} = \frac{\pi d^3}{16} \cong$$$

No dimensionamento, devemos impor:
$$\tau_{max} = \frac{M_t}{W_t} \le \tau_{adm}$$

No cálculo, adotaremos:

$$\tau_e = 0, 6 \cdot \sigma_e$$
 e $\tau_{adm} = \frac{\tau_e}{ks}$, em que:

 τ = tensão de escoamento ao cisalhamento τ_{adm} = tensão admissível ao cisalhamento **ks** = coeficiente de segurança

$$\frac{\mathsf{M}_{\mathsf{t}}}{\mathsf{I}_{\mathsf{P}}} \cdot \mathsf{r}$$
 (I)

 $\cong 0, 2 \cdot d^3$

-14

Exemplo

Dada uma barra de seção circular, solicitada conforme indicado na figura 2.57, determinar o valor do diâmetro para que resista ao momento gerado pelo binário de intensidade igual a 200 N.

Figura 2.57 Barra de seção circular solicitada por um binário.

Dados:
$$\sigma_{e} = 400 \text{ MPa}$$
; ks = 6; 1 MPa = 1 $\frac{N}{mm^{2}}$

Solução

$$\tau = \frac{M_t}{W_t} \leq \tau_{\text{adm}}$$

$$\tau_{adm} = \frac{\tau_{e}}{ks} = \frac{0, 6 \cdot \sigma_{e}}{ks} = \frac{0, 6 \cdot 400}{6} = 40 \text{ MPa}$$

 $Mt = F \cdot 400 = 80\,000 = 8 \cdot 104 \text{ N} \cdot \text{mm}$

$$\frac{M_t}{W_t} \leq \tau_{adm} \implies W_t \geq \frac{M_t}{\tau_{adm}} = \frac{8 \cdot 10^4}{40} = 2 \cdot 10^3 \text{ mm}^3 \otimes$$

$$W_t = \frac{\pi d^3}{16} \ge 2 \cdot 10^3 \implies d^3 \ge \frac{16 \cdot 2 \cdot 10^3}{\pi} \implies d \ge 21,7 \text{ mm}$$

2.8.2 Ângulo de torção

O deslocamento angular (θ) devido à aplicação de um momento torçor (M_t), conforme ilustrado na figura 2.58, é determinado por:

$$\theta = \frac{M_t \cdot \ell}{G \cdot I_P}$$
 (θ) em radianos

$$G = \frac{\tau}{\gamma} \left(\frac{N}{m^2}; \frac{N}{mm^2} \dots \right)$$

 γ = deformação de cisalhamento

Exemplo

Para o eixo indicado na figura 2.59, determinar a tensão máxima de cisalhamento e o ângulo de torção correspondente a 1 m de comprimento.

Dados:
$d = 50 \text{ mm} = 5 \cdot 10^{-2} \text{ m}$
$M_1 = 1000 N\cdot m$
$\ell = 1 \text{ m}$
G = 84 GPa
$I_{\rm P} = \frac{\pi d^4}{32} = \frac{\pi \left(5 \cdot 10^{-2}\right)^4}{32} = \frac{\pi \cdot 625 \cdot 10^{-8}}{32} = 61,36 \cdot 10^{-8} \text{ m}^4$

CAPÍTULO 2

Figura 2.58 Rotação devida ao momento torçor.

O valor de *G* é uma característica do material e consta em tabelas de livros e de manuais.

Figura 2.59

Exemplo proposto para ângulo de torção.

$$\begin{aligned} \tau_{m\acute{a}x} &= \frac{M_{t}}{l_{p}} \frac{d}{2} = \frac{1000 \cdot 2.5 \cdot 10^{-2}}{61.36 \cdot 10^{-8}} = \frac{25 \cdot 10^{8}}{61.36} = 40.7 \cdot 10^{6} \frac{N}{m^{2}} \\ \therefore \ \tau_{m\acute{a}x} &= 40.7 \text{ MPa ou } \tau_{m\acute{a}x} = 40.7 \frac{N}{mm^{2}} \end{aligned}$$

O ângulo de torção (θ) pode ser determinado por: $\theta = \frac{M_t \cdot \ell}{G \cdot I_P}$

$$\theta = \frac{10^3 \cdot 1}{84 \cdot 10^9 \cdot 61,36 \cdot 10^{-8}} = \frac{10^3}{84 \cdot 61,36 \cdot 10} = 0,0194 \text{ rad}$$

 $\theta = 0,0194 \text{ rad} \Rightarrow \theta = 1^{\circ} 7^{\circ}$

2.8.3 Fórmula do torque em função da potência e da rotação

Em muitas aplicações mecânicas, conhecemos a potência em quilowatts (kW) e a frequência em rotações por minuto (rpm) que atuam nos elementos de máquinas.

Para determinarmos o torque, partimos da definição da potência (N) (não confundir com o símbolo de força N de newton).

$$N = \frac{\text{trabalho}}{\text{tempo}} = \frac{F \cdot S}{t} = F \cdot V \implies N = F \cdot V \text{ (W)} \text{ (I)}$$

em que:
$$F = \text{força}(N) \text{ e } V = \text{velocidade } \frac{m}{s}$$

A unidade de potência é: $\frac{\text{newton} \cdot \text{metro}}{\text{segundo}} = \frac{\text{joule}}{\text{segundo}}$ -= watt

Da transmissão em eixos circulares, como indicado na figura 2.60, temos:

Figura 2.60 Transmissão em eixos circulares.

• Força tangencial (F)

$$M_t = F \cdot \frac{d}{2} \implies F = \frac{2M_t}{d}$$
 (N) (II)

• Velocidade tangencial (V)

$$V = \frac{\pi d}{T} = \pi dn \left(\frac{m}{s}\right) \text{ ou } V = \frac{\pi dn}{60} \left(\frac{m}{\min}\right) \text{ (III)}$$

em que: $n = \frac{1}{T}$ é a rotação em rpm, e $T = \text{ período.}$

Substituindo (II) e (III) em (I), temos:

$$N = \frac{2M_t}{d} \cdot \frac{\pi dn}{60} = \frac{\pi M_t}{30} \implies M_t = \frac{30}{\pi} \cdot \frac{N}{n} = 9,55 \frac{N}{n}$$

$$\therefore M_t = 9,55 \cdot \frac{N}{n}$$

em que: M_t = torque (em N · m), N = potência (em W), n = rotação (em rpm). Se a potência for dada em quilowatt (kW), a fórmula passa a ser de:

$$M_t = 9.550 \cdot \frac{N}{m}$$

com, N = potência (kW), n = frequência (rpm) e M_t = torque (N · m)

Exemplo

Determinar o diâmetro do núcleo do eixo de um motor elétrico, conforme indicado na figura 2.61, para uma transmissão direta (somente com torque).

Figura 2.61

Exemplo de transmissão de potência.

Dados: N = 20 hp, n = 1 160 rpm, τ_{adm} = 50 MPa, e 1 hp = 0,746 kW

Solução

$$N = 20 \cdot 0,746 = 14,92 \text{ kW}$$

$$M_{t} = 9550 \frac{N}{n} = 9550 \cdot \frac{14,92}{1160} = 122,8 \text{ N} \cdot \text{m}$$

$$\tau = \frac{M_{t}}{W_{t}} \le \tau_{adm} \implies W_{t} \ge \frac{M_{t}}{\tau_{adm}} = \frac{122,8 \cdot 10^{3}}{50} \implies W_{t} \ge 2456 \text{ mm}^{3}$$

$$W_{t} = \frac{\pi d^{3}}{16} \ge 2456 \implies d \ge \sqrt[3]{\frac{162456}{\pi}} \implies d \ge 23,2 \text{ mm}$$

2.9 Flexo-torção

Até o momento, os carregamentos discutidos consideravam efeitos não combinados, eram apenas de tração, flexão ou torção, promovendo assim apenas um único tipo de tensão. Em situações mais realistas, no entanto, há necessidade de combiná-los.

O estudo a ser desenvolvido será efetuado para barras de seção transversal circular constante, de materiais que apresentam comportamento dúctil, solicitados simultaneamente à flexão e à torção e em condição de equilíbrio estático.

2.9.1 Tensão ideal

Sabemos que em uma seção transversal de um eixo quando solicitado por um momento fletor (M) e por um momento torçor (M_t) ocorrem, respectivamente, tensões normais (σ) e tensões de cisalhamento (τ), representadas de forma esquemática na figura 2.62.

As tensões σ e τ variam proporcionalmente com o raio e são nulas no centro do eixo.

Figura 2.62 Flexo-torção para uma barra de seção circular constante.

Os valores máximos dessas tensões se localizam no contorno da seção e valem:

$$\sigma = \frac{M}{W} e \tau = \frac{M_t}{W_t}$$

em que: $W = \frac{\pi d^3}{32} \approx 0, 1 \cdot d^3 e W_t = \frac{\pi d^3}{16} \approx 0, 2 \cdot d^3$

Como as tensões normais (σ) atuam no plano que passa pelo eixo longitudinal e as tensões de cisalhamento (τ) no plano transversal perpendicular a esse eixo e não podem simplesmente ser somadas, portanto, devemos recorrer a alguns critérios consagrados da resistência dos materiais.

Escolhemos o critério da teoria da maior energia de Von Mises, em que:

$$1) \ \sigma_{_{i}} = \sqrt{\sigma^{^{2}} + 4\tau^{^{2}}} \leq \sigma_{_{adm}} \,, \label{eq:solution_state}$$

e a teoria do maior alongamento de Bach, em que:

2)
$$\sigma_{i} = 0.35\sigma + 0.65\sqrt{\sigma^{2} + 4\tau^{2}} \le \sigma_{adm}$$

Essa tensão ideal (σ_i) pode ser interpretada como tensão capaz de produzir o mesmo efeito que a soma da tensão normal (σ) e da tensão de cisalhamento (τ), agindo simultaneamente na seção transversal da barra, como se fosse submetida a uma flexão simples.

2.9.2 Cálculo do diâmetro do eixo

Como há dois critérios diferentes para o dimensionamento de eixos, são esperados como resultado disso valores ligeiramente diferentes de ambos os métodos. Dessa forma, desenvolvendo o critério de Von Mises, obtemos:

$$\begin{split} &\sqrt{\sigma^2 + 4\tau^2} \leq \sigma_{adm} \Rightarrow \sigma^2 + 4\tau^2 \leq \sigma^2_{adm} \\ &\left(\frac{M}{W}\right)^2 + 4 \left(\frac{M_t}{W_t}\right)^2 \leq \sigma^2_{adm} \end{split}$$

Substituindo, $W = 0,1 \cdot d^3$ e $W_t = 0,2 \cdot d^3$, temos:

$$\begin{split} \left(\frac{M}{0,1\cdot d^3}\right)^2 + 4\left(\frac{M_t}{0,2\cdot d^3}\right)^2 &\leq \sigma_{adm}^2 \\ \left(\frac{10^2M^2}{d^6}\right) + \left(\frac{10^2\cdot M_t^2}{d^6}\right)^2 &\leq \sigma_{adm}^2 \Rightarrow d \geq \sqrt[6]{\frac{10^2\left(M^2 + M_t^2\right)}{\sigma_{adm}^2}} \end{split}$$

O valor de d é o diâmetro da barra solicitada à flexão-torção.

Desenvolvendo o critério de Bach, obtemos outra equação para a determinação do diâmetro.

$$\begin{split} &\sigma_{i} = 0,35 \cdot \sigma + 0,65\sqrt{\sigma^{2} + 4\tau^{2}} \leq \sigma_{adm} \\ &0,35 \cdot \frac{M}{0,1d^{3}} + 0,65\sqrt{\left(\frac{M}{0,1d^{3}}\right)^{2} + 4\left(\frac{M_{t}}{0,2d^{3}}\right)^{2}} \leq \sigma_{adm} \\ &\frac{3,5M}{d^{3}} + 0,65\sqrt{\frac{10^{2}M^{2}}{d^{6}} + \frac{4 \cdot 10^{2} \cdot M_{t}^{2}}{4d^{6}}} \leq \sigma_{adm} \Rightarrow \frac{3,5M}{d^{3}} + 6,5\frac{\sqrt{M^{2} + M_{t}^{2}}}{d^{3}} \leq \sigma_{adm} \Rightarrow \\ &\Rightarrow d \geq \sqrt[3]{\frac{3,5M + 6,5\sqrt{M^{2} + M_{t}^{2}}}{\sigma_{adm}}} \end{split}$$

Exemplo

Dada uma barra cilíndrica, solicitada conforme o carregamento da figura 2.63,

determinar seu diâmetro utilizando os critérios de Von Mises e Bach.

Dados: P = 2000 N, a = 240 mm, ℓ = 400 mm e σ = 40 MPa.

Solução

A seção que possui maior solicitação é o engastamento, local onde se observa o maior momento fletor, uma vez que o momento torçor e a cortante são constantes para todo o elemento.

O efeito da força cortante não é considerado, em razão de seu valor ser desprezível em relação aos dos momentos fletor e torçor.

$$M = P \cdot \ell = 2000 \cdot 400 = 8 \cdot 10^5 N \cdot mm$$

 $M_{t} = P \cdot a = 2000 \cdot 240 = 4,8 \cdot 10^{5} N \cdot mm$

As tensões máximas ocorrem nos pontos A e B, e os valores dos diâmetros calculados pelos critérios 1 e 2 valem, respectivamente, 61,5 mm e 60,5 mm, após aplicação das equações, substituindo os valores de M e M_t. Assim

Critério 1
$$\Rightarrow d \ge \sqrt[6]{\frac{10^2 \left[\left(8 \cdot 10^5 \right)^2 + \left(4, 8 \cdot 10^5 \right)^2 \right]}{40^2}} \Rightarrow d \ge 61,5$$

Critério 2 $\Rightarrow d \ge \sqrt[3]{\frac{3,5 \cdot 8 \cdot 10^5 + 6,5 \sqrt{\left(8 \cdot 10^5 \right)^2 + \left(4, 8 \cdot 10^5 \right)^2}}{40}}$

2.10 Flambagem

Uma coluna ou barra submetida a uma força axial de compressão (P) pode, em virtude desse carregamento, permanecer reta ou curvar-se lateralmente. Se permanecer reta, é considerada um corpo carregado sofrendo esforços de compressão. Ao fenômeno produzido pela passagem de uma para a outra forma em equilíbrio dá-se o nome de flambagem.

Barras esbeltas (finas e compridas), solicitadas à compressão, sofrem colapso quase ao mesmo tempo em que se atinge a carga limite de flambagem, fato que se deve à sobreposição de esforços internos.

Por exemplo, o aumento de 1% acima da carga crítica de flambagem pode provocar um deslocamento relativo à condição inicial (seta f) da ordem de 20% de seu comprimento total (ℓ), esquematicamente indicado na figura 2.64. Ou seja:

 $P = 1,01 Pf \Rightarrow f \simeq 0,2 \ell$

mm

 \Rightarrow d \geq 60, 5 mm

Figura 2.64

Indicação de deslocamento devido à flambagem.

2.10.1 Carga de flambagem

Denomina-se carga de flambagem (P_f), ou carga crítica, a carga axial aplicada a uma barra esbelta que faz a barra deixar de ser estável (reta) e curvar-se lateralmente.

A carga de flambagem (P_f) para uma barra prismática, no regime elástico, é dada pela expressão conhecida como fórmula de Euler.

$$P_f = \frac{\pi}{I_f^2} \cdot E \cdot I$$
 em que:

 P_f = carga de flambagem, E = módulo de elasticidade, I = momento de inércia mínimo, e I_f = comprimento de flambagem

O valor do comprimento de flambagem (l_f) depende de como as barras são apoiadas nas extremidades. A figura 2.65 indica condições possíveis de deslocamentos para barras esbeltas sob compressão. A figura 2.65a mostra esquematicamente o perfil de deslocamento para uma condição em que a barra é fixa em uma extremidade e livre na outra. Os demais perfis de deslocamento para diferentes tipos de apoio estão representados nos esquemas b, c e d da figura 2.65.

Figura 2.65

Perfis de deslocamento para um carregamento axial de compressão: a) viga em balanço; b) viga biarticulada com guia; c) viga engastada em uma das extremidades e articulada na região com guia; d) viga sem articulação com guia na região móvel.

2.10.2 Tensão de flambagem

No instante que precede a flambagem, a tensão de flambagem (σ_f) é dada por:

$$\sigma_{f} = \frac{P_{f}}{S}$$
 (I)

Sabendo que
$$P_f = \frac{\pi^2 \cdot E \cdot I}{I_f^2}$$
 e substituindo em (I), temos:

$$\sigma_{\mathsf{f}} = \frac{\mathsf{P}_{\mathsf{f}}}{\mathsf{S}} = \frac{\pi^2 \cdot \mathsf{E} \cdot \mathsf{I}}{\mathsf{I}_{\mathsf{f}}^2 \cdot \mathsf{S}} = \frac{\pi^2 \cdot \mathsf{E}}{\mathsf{I}_{\mathsf{f}}^2} \left(\frac{\mathsf{I}}{\mathsf{S}}\right) = \frac{\pi^2 \cdot \mathsf{E} \cdot \mathsf{I}^2}{\mathsf{I}_{\mathsf{f}}^2} = \frac{\pi^2 \mathsf{E}}{\left(\frac{\mathsf{I}_{\mathsf{f}}}{\mathsf{i}}\right)^2}$$

$$\sigma_{f}=\frac{\pi^{2}E}{\lambda^{2}}$$

em que:

$$i = \sqrt{\frac{l}{S}}$$
 i: raio de giração mínimo da seção transversal
 $\lambda = \frac{l_f}{i}$ λ : índice ou grau de esbeltez da barra

A representação gráfica da função $\sigma_{f\ell} = f(\lambda)$, indicada na figura 2.66, recebe o nome de curva de flambagem.

qualquer valor de λ . Para que esteja no regime elástico, devemos impor:

$$\sigma_{_{f\ell}} = \frac{\pi^2 E}{\lambda^2} \le \sigma_{_p}$$

em que: σ_n = tensão de proporcionalidade.

$$\lambda^2 \geq \frac{\pi^2 \mathsf{E}}{\sigma_{\mathsf{p}}} \;\; \Rightarrow \;\; \lambda \geq \pi \cdot \sqrt{\frac{\mathsf{E}}{\sigma_{\mathsf{p}}}} = \lambda_{\mathsf{lim}}$$

Figura 2.66 Curva de flambagem.

 λ_{lim} = menor valor de λ para o qual é válida a expressão.

Por exemplo, para o aço com
$$E = 2 \cdot 10^5 \frac{N}{mm^2}$$
 e $\sigma_p = 2 \cdot 10^2 \frac{N}{mm^2}$, temos:

$$\lambda_{lim} = \pi \sqrt{\frac{2 \cdot 10^5}{2 \cdot 10^2}} = \pi \cdot 10 \cdot \sqrt{10} \simeq 100$$

Portanto, somente para $\lambda \ge 100$ a hipérbole de Euler é aplicável, conforme indicado na figura 2.67.

Figura 2.67 Hipérbole de Euler para determinado tipo de aço.

Quando $\lambda \leq \lambda_{lim}$ ou $\sigma_{fl} > \sigma_{p}$, a flambagem é denominada não elástica.

Exemplo

Determinar o comprimento dos punções para estampar uma chapa de aço SAE 1020, nas condições livre e guiada. Informações adicionais sobre a geometria dos punções são indicadas na figura 2.68.

Figura 2.68 Exemplo de elemento sujeito a flambagem.

Dados: **e** (espessura da chapa) = 2,5 mm; $E = 2 \cdot 10^5 \frac{N}{mm^2}$; τ_{c}

Solução

Na figura 2.68, notamos que os punções possuem suas extremidades engastadas. Dessa forma, as condições para seu dimensionamento são:

Livre $\Rightarrow I_f = 2 I$

Guiada $\Rightarrow I_f = 0,7 I$

A força de corte (F_c) para estampar a chapa é obtida por:

 $F_c = \tau_{corte} \cdot parímetro de corte \cdot espessura$

$$F_c = 350 \cdot 2(20 + 7) \cdot 2,5 = 47250N$$

$$I = \frac{20 \cdot 7^3}{12} = 571,7 \text{ mm}^4$$

$$\mathsf{P}_{\mathsf{fl}} = \frac{\pi^{-} \cdot \mathsf{E} \cdot \mathsf{I}}{\mathsf{I}_{\mathsf{f}}^2} \implies \mathsf{I}_{\mathsf{f}}^2 = \frac{\pi^{-} \cdot \mathsf{E} \cdot \mathsf{I}}{\mathsf{P}_{\mathsf{fl}}}$$

$$I_{f}^{2} = \frac{\pi^{2} \cdot 2 \cdot 10^{5} \cdot 571,7}{47250} \Rightarrow I_{f} \cong 154 \text{ mm}$$

Portanto, para o punção livre, $I_f = 2L$:

$$I_f = 2 L_1 = 154 \Longrightarrow L_1 = \frac{154}{2} \Longrightarrow L_1 = 77 \text{ mm}$$

Para o punção guiado, $I_f = 0,7L$:

$$I_f = 0,7L_2 = 154 \Longrightarrow L_2 = \frac{154}{0,7} \Longrightarrow L_2 = 220 \text{ mm}$$

2.11 Centro de gravidade e momento de inércia

2.11.1 Centro de gravidade

Consideremos uma barra de eixo reto e seção transversal constante. Observamos que a barra pode ser suspensa por fios com movimento apenas de translação, conforme indicado na figura 2.69.

CAPÍTULO 2

$$_{\rm corte} = 350 \frac{\rm N}{\rm mm^2}$$

A linha de ação da força F, aplicada no encontro dos fios em P, cruza a seção transversal da barra no ponto G, o qual denominamos centro de gravidade ou baricentro dessa figura plana, de modo que a barra fique em equilíbrio e em posição vertical.

O ponto G pode estar localizado na própria figura ou fora dela.

Figura 2.69 Exemplo esquemático da obtenção do centro de gravidade.

Centro de gravidade de figuras planas

O centro de gravidade (G) de uma figura plana qualquer é localizado pelas coordenadas $X_G e Y_G$, como mostra a figura 2.70, em que:

Obtenção do centro de gravidade para uma figura qualquer.

Figura 2.70

O teorema de-Varignon diz que "o momento de um sistema de forças concorrentes é igual ao momento da força resultante ou igual à soma algébrica dos momentos das componentes".

S =área da figura plana; dS =elemento de área (área elementar); $G = \{X_G, Y_G\}$.

Fazendo analogia com o teorema de Varignon, podemos escrever em relação ao eixo X:

$$S \cdot y_{G} = \int_{S} ds \cdot y \implies y_{G} = \frac{\int ds \cdot y}{S}$$
 (I)

$$S \cdot x_{g} = \int_{S} ds \cdot x \implies x_{g} = \frac{\int ds \cdot x}{S}$$
 (II)

em que o símbolo ∫ é chamado integral e significa soma.

Portanto, $\int_{S} ds \cdot x$

significa a soma do produto de todas as áreas elementares pela correspondente distância ao eixo y e é chamado momento estático em relação ao eixo $y(M_v)$.

Do exposto conclui-se também que o momento estático em relação ao eixo $x (M_x)$ é:

$$M_x = \int_{S} ds \cdot y$$

Logo, as expressões (I) e (II) podem ser escritas assim:

$$\mathbf{x}_{G} = \frac{\mathbf{M}_{y}}{\mathbf{S}} e \mathbf{y}_{G} = \frac{\mathbf{M}_{x}}{\mathbf{S}} \therefore \mathbf{G} = \{\mathbf{x}_{G}; \mathbf{y}_{G}\}$$

O eixo de simetria de uma figura plana contém o baricentro, isto é, o centro de gravidade da figura, como mostra o exemplo da figura 2.71.

Se a figura plana apresenta dois eixos de simetria, seu centro de gravidade é a intersecção desses eixos.

Figura 2.71 Elemento com simetria.

Centro de gravidade de figuras planas simples

O centro de gravidade de figuras planas simples pode ser obtido como mostra a figura 2.72.

Figura 2.72 Centro de gravidade de figuras planas simples.

Centro de gravidade de figuras compostas

Em diversas ocasiões, as seções transversais são complexas, entretanto, baseiam--se em figuras planas simples. O esquema a da figura 2.73 indica uma figura plana composta por diversas geometrias simples.

De modo geral, para qualquer geometria, o centro de gravidade é igual ao somatório dos produtos da área da figura individual pela respectiva coordenada. O caso generalizado é indicado no esquema b da figura 2.73.

Figura 2.73

a) Figura plana composta por diversas geometrias simples; b) figura plana qualquer.

Dessa forma, dividindo a figura em n partes, as coordenadas do centro de gravidade são:

$$x_{G} = \frac{S_{1}x_{G_{1}} + S_{2}x_{G_{2}} + \dots + S_{n}x_{n}}{S} = \frac{\sum_{i=1}^{n} S_{i} \cdot x_{G_{i}}}{S}$$
$$y_{G} = \frac{S_{1}y_{G_{1}} + S_{2}y_{G_{2}} + \dots + S_{n}y_{n}}{S} = \frac{\sum_{i=1}^{n} S_{i} \cdot x_{G_{i}}}{S}$$
em que: $S = S_{1} + S_{2} + \dots + S_{n} = \sum_{i=1}^{n} S_{i}$

Exemplo

Determinar as coordenadas do centro de gravidade da figura 2.74.

Solução

Inicialmente, dividimos a figura em dois retângulos 1 e 2. Determinamos, então, o centro de gravidade de cada retângulo ($G_1 e G_2$). A seguir, aplicamos as fórmulas de determinação do centro de gravidade da figura plana.

$$\begin{split} x_{G} &= \frac{\sum S_{i} \cdot x_{G_{i}}}{S} = \frac{S_{1}x_{G_{1}} + S_{2}x_{G_{2}}}{S_{1} + S_{2}} \quad (I) \\ y_{G} &= \frac{\sum S_{i} \cdot y_{G_{i}}}{S} = \frac{S_{1}y_{G_{1}} + S_{2}y_{G_{2}}}{S_{1} + S_{2}} \quad (II) \\ S_{1} &= 6 \cdot 20 = 120 \text{ cm}^{2} \rightarrow x_{G_{1}} = 3 \text{ cm}; \text{ } y_{G_{1}} = 10 \text{ cm} \\ S_{2} &= 10 \cdot 4 = 40 \text{ cm}^{2} \rightarrow x_{G_{2}} = 11 \text{ cm}; \text{ } y_{G_{2}} = 2 \text{ cm} \end{split}$$

Figura 2.74

Centro de gravidade de figuras compostas.

$$x_{G} = \frac{120 \cdot 3 + 40 \cdot 11}{120 + 40} = \frac{800}{160} = 5$$
$$y_{G} = \frac{120 \cdot 10 + 40 \cdot 2}{120 + 40} = \frac{1280}{160} = 8$$

Portanto, o centro de gravidade é: G {5 cm; 8 cm}, e a localização se faz como mostrado na figura 2.75.

Figura 2.75 Localização do centro de gravidade.

2.11.2 Momento de inércia

Momento de inércia (I) é uma grandeza escalar. Podemos dizer que é uma propriedade da seção transversal. O momento de inércia de uma figura plana dá uma noção da resistência: quanto maior o momento de inércia, mais resistente é a peça.

Definição do momento de inércia

O momento de inércia de uma superfície de área finita qualquer em relação a um dos eixos do plano, como mostra a figura 2.76, é definido como a integral (somatório) dos momentos de inércia de todos os elementos infinitesimais de área contidos na superfície em relação a esse eixo.

Figura 2.76 Momento de inércia de uma superfície qualquer.

 $I_x = \int_S y^2 \cdot ds$ $I_y = \int_{S} x^2 \cdot ds$

Observações

a) I_x e I_y são grandezas cujo valor numérico é sempre maior ou igual a zero. b) $I_x e I_y$ são grandezas que dependem das características geométricas da seção. c) As unidades de medida de I_x e I_y são as de comprimento elevadas à 4^a potência $(m^4, cm^4, mm^4 etc.).$

Exemplo

Determinar o momento de inércia em relação a um eixo (X_G) que passa pelo centro de gravidade de um retângulo paralelo a sua base, conforme indicado na figura 2.77.

Dados: b = 2 cm

h = 4 cm

Solução

O momento de inércia em relação ao eixo X_G é dado pela eq desta forma:

$$I_{x_{G}} = \frac{2 \cdot 4^{3}}{12} \cong 10,7 \therefore I_{x_{G}} = 10,7 \text{ cm}^{4}$$

Momento polar de inércia

O momento polar de inércia é uma grandeza escalar, assim como o momento de inércia, entretanto, possui relação direta com a resistência. Ou seja, quanto maior o momento polar de inércia maior a resistência à torção.

Figura 2.77

Exemplo do momento de inércia.

uação
$$I_{x_G} = \frac{bh^3}{12}$$

Podemos determinar o momento polar de inércia (I_P) como:

 $I_{P} = \int_{S} r^{2} \cdot ds$

em que r é a distância entre o elemento infinitesimal e o polo.

Para uma geometria plana qualquer, podemos observar as dimensões ilustradas na figura 2.78.

Figura 2.78 Geometria plana qualquer.

O momento polar de inércia é a soma de dois momentos de inércia de eixos perpendiculares um ao outro, e que cruzam no polo.

Da figura, temos:

$$I_{P} = \int_{S} (x^{2} + y^{2}) ds = \int_{S} x^{2} ds + \int_{S} y^{2} ds$$
$$\therefore I_{P} = I_{y} + I_{x}$$

Exemplo

Determinar o momento de inércia em relação ao centro de uma seção circular indicada na figura 2.79.

Solução

Sabendo que os momentos de inércia em relação aos eixos X_G vamos aplicar a fórmula:

$$I_{\rm P} = I_{\rm x} + I_{\rm y} = \frac{\pi d^4}{64} + \frac{\pi d^4}{64} = \frac{2\pi d^4}{64} = \frac{\pi d^4}{32} \quad \therefore \quad I_{\rm P} = \frac{\pi d^4}{32}$$

Módulo de resistência

Define-se o módulo de resistência (W) de uma superfície plana em relação aos eixos baricêntricos X_G e Y_G como a **relação** entre o momento de inércia (l) relativo ao eixo que passa pelo centro de gravidade e a distância máxima entre o eixo e a extremidade da seção transversal analisada.

As dimensões máximas, esquematicamente ilustradas na figura 2.80, são obtidas em função do centro de gravidade.

Exemplo

Determinar os módulos de resistência da seção plana retangular, indicada na figura 2.81, em relação aos eixos baricêntricos paralelos aos lados.

e
$$y_{\rm G}$$
 valem $\frac{\pi d^4}{64}$,

Figura 2.80

Determinação das dimensões máximas em relação ao centroide.

Figura 2.81

Exemplo de cálculo do módulo de resistência.

Solução

Sabendo que o momento de inércia em relação ao eixo X_G é

$$I_{x_G} = \frac{bh^3}{12}$$
 e que o momento de inércia em relação ao eixo Y_G é

$$I_{y_G} = \frac{hb^3}{12}, \ x_{max} = \frac{b}{2} \ e \ y_{max} = \frac{h}{2}, \ temost$$

$$W_{x_G} = \frac{I_{x_G}}{y_{max}} = \frac{\frac{bh^3}{12}}{\frac{h}{2}} = \frac{bh^2}{6}$$

$$W_{y_{G}} = \frac{I_{y_{G}}}{x_{max}} = \frac{\frac{hb^{3}}{12}}{\frac{b}{2}} = \frac{hb^{2}}{6}$$

$$\therefore W_{x_G} = \frac{bh^2}{6} \quad e \quad W_{y_G} = \frac{hb^2}{6}$$

Translação de eixos (teorema de Steiner)

Quando o momento de inércia é conhecido para determinado eixo, é possível transportar esse momento a outro eixo desde que este seja paralelo. O teorema descrito é denominado teorema do eixo paralelo ou teorema de Steiner.

Uma seção transversal (geometria bidimensional) qualquer, como sugerido na figura 2.82, possui área total igual a S. Se o momento de inércia é conhecido para o eixo X_G, podemos determinar seu momento de inércia em um eixo qualquer (**x**) paralelo cuja dimensão é igual a **d**.

Dessa forma, obtemos a seguinte equação:

 $I_x = I_{x_G} + S \cdot d^2$

em que: I_x = momento de inércia no eixo x.

Exemplo

Determinar o momento de inércia de uma seção retangular em relação a um eixo que passa pela base, como indicado na figura 2.83.

Solução

Sabendo que
$$I_{x_G} = \frac{bh^3}{12}$$
 e que X // X_G , aplicando a fórmula, f
 $I_x = \frac{bh^3}{12} + b \cdot h\left(\frac{h}{2}\right)^2 = \frac{bh^3}{12} + \frac{bh^3}{4} \Rightarrow$
 $\Rightarrow I_x = \frac{bh^3 + 3bh^3}{12} = \frac{4bh^3}{12} \Rightarrow I_x = \frac{bh^3}{3}$

Figura 2.82

Representação esquemática do teorema de Steiner.

Figura 2.83

Exemplo de aplicação do teorema dos eixos paralelos.

temos: $I_x = I_{x_c} + sd^2$

Momento de inércia e módulos de resistência

Como para o cálculo do momento de inércia exige-se conteúdo de matemática (cálculo diferencial e integral) ainda não adquirido pelos alunos do ensino médio, esta e as demais propriedades de figuras planas são oriundas de tabelas fornecidas em livros e manuais.

Tabela 2.3

Momento de inércia e módulo de resistência para geometrias planas. Para algumas geometrias simples, são apresentados na tabela 2.3 o momento de inércia axial (I_x) , momento polar de inércia (I_p) , módulo de resistência (W_x) e módulo de resistência polar (W_p) .

Seções	Momento de inércia axial (I _x)	Momento polar de inércia (I _P)	Módulo de resistência (W _×)	Módulo de resistência polar (W _p)
$\begin{array}{c c} G \\ \hline G \\ \hline & X \\ \hline & b \\ \hline & b \\ \end{array}$	$I_x = \frac{bh^3}{12}$	$I_x = \frac{bh(b^2 + h^2)}{12}$	$W_x = \frac{bh^2}{6}$	$W_{p} = \frac{b \cdot h^{2}}{3 + 1,8b / h}$ se, h > b
G b X	$I_x = \frac{\pi d^4}{64}$	$I_{p} = \frac{\pi d^{4}}{32}$	$W_x = \frac{\pi d^3}{32} \cong 0,1d^3$	$W_p = \frac{\pi d^3}{16} \cong 0,2d^3$
	$I_x = \frac{bh^3}{36}$	$I_p = \frac{3b^4}{48}$ p/ Δ equilátero	$W_x = \frac{bh^2}{24}$	$W_p = 0,05 \cdot b^3$ p/ Δ equilátero
	$I_x = 0,5413 \cdot a^4$	$I_p = 1,0825 \cdot a^4$	$W_x = 0,5413 \cdot a^3$	$W_p = 0,917 \cdot a^3$
	$I_x = \frac{a^4}{12}$	$I_p = \frac{a^4}{6}$	$W_x = \frac{a^3}{6}$	$W_p = 0,208 \cdot a^3$
	$I_x = \frac{a^4}{12}$	$I_p = \frac{a^4}{6}$	$W_x = \frac{\sqrt{2}a^3}{12}$	$W_p = 0,208 \cdot a^3$
	$I_x = \frac{\pi(D^4 - d^4)}{64}$	$I_p = \frac{\pi(D^4 - d^4)}{32}$	$W_x = \frac{\pi (D^4 - d^4)}{32D}$	$W_p = \frac{\pi(D^4 - d^4)}{16D}$

(150)

Exemplo

Determinar o valor do diâmetro de uma seção circular que tem o mesmo valor do momento de inércia de uma seção retangular de 2 cm × 5 cm, cujo eixo passa pelo centro de gravidade paralelo a sua base menor, conforme indicado na figura 2.84.

Solução

$$I_{x_{G}} = \frac{bh^{3}}{12} = \frac{2 \cdot 5^{3}}{12} = 20.8 \text{ cm}^{4}$$

O momento de inércia da seção circular em relação a um eixo que passa pelo centro de gravidade é:

$$I_{x_G} = \frac{\pi d^4}{64}$$
. Dessa forma: $\frac{\pi d^4}{64} = 20,8 \implies d^4 = \frac{64 \cdot 20,8}{\pi}$

 \therefore d \cong 4,5 cm

Exemplo geral

Calcular o momento de inércia da figura 2.85 em relação a um eixo que passa pelo centro de gravidade paralelo à base.

Figura 2.84

Exemplo de momento de inércia.

Figura 2.85 Exemplo de caso geral.

Solução

Como a figura tem um eixo de simetria, definimos o eixo y coincidindo com o eixo de simetria.

Dividimos a geometria em duas figuras simples, 1 e 2, e determinamos $G_1 e G_2$.

Em seguida, determinamos o centro de gravidade

$$x_{G} = \frac{\sum S_{1} \cdot x_{G_{i}}}{S} = 0$$
, pelo fato de esse ponto encontrar-se no eixo de simetria.

$$y_{G} = \frac{\sum S_{i} \cdot y_{G_{1}}}{S} = \frac{S_{1} \cdot y_{G_{1}} + S_{2} \cdot y_{G_{2}}}{S_{1} + S_{2}} = \frac{6 \cdot 2 \cdot 9 + 2 \cdot 8 \cdot 4}{6 \cdot 2 + 2 \cdot 8}$$

$$y_{\rm G} = \frac{108 + 64}{28} = \frac{172}{28} \implies y_{\rm G} = 6,14 \text{ cm}$$

Obtidos os valores das coordenadas $x_G = 0$ e $y_G = 6,14$ cm, localizamos o ponto G na geometria, conforme indicado na figura 2.86.

Figura 2.86 Indicação do centro de gravidade para a geometria proposta.

$$I_{x_{G}}^{S} = I_{x_{G}}^{S_{1}} + I_{x_{G}}^{S_{2}}$$

$$I_{x_{G}} = \left(I_{x_{G_{1}}}^{S_{1}} + S_{1} \cdot d_{1}^{2}\right) + \left(I_{x_{G_{2}}}^{S_{2}} + S_{2} \cdot d_{2}^{2}\right) \Longrightarrow$$

$$\Rightarrow I_{xG} = \left(\frac{6 \cdot 2^{3}}{12} + 6 \cdot 2 \cdot 2, 86^{2}\right) + \left(\frac{2 \cdot 8^{3}}{12} + 2 \cdot 8 \cdot 2, 14^{2}\right)$$

$$I_{x_{G}} = (4 + 98, 2) + (85, 3 + 73, 3) \Longrightarrow I_{x_{G}} = 260, 8 \text{ cm}^{4}$$

Elementos de máquinas

Capítulo 3

ste capítulo utiliza todos os conceitos desenvolvidos durante o curso de Mecânica. A combinação dos temas fundamentais (mecânica básica, resistência dos materiais, materiais e processos produtivos e desenho técnico mecânico) e a introdução de alguns conceitos de cinemática proporcionam subsídios para a realização de projetos.

3.1 Introdução aos elementos de transmissão

Elementos de transmissão são dispositivos mecânicos que possibilitam normalmente a transferência de torque ou carga. Essa transmissão pode ocorrer por meio de rotação ou translação. São exemplos de elementos de transmissão as engrenagens, correias, cabos de aço, acoplamentos etc.

3.1.1 Movimento circular uniforme

O movimento circular é em geral utilizado na transmissão de potência ou torque. A maioria dos elementos girantes é acionada por motores elétricos ou de combustão interna. Em função dos atritos mecânicos e da inércia dos elementos desprezamos as condições de partida (transiente inicial) e, no fim, obtemos apenas um movimento de rotação constante. Dessa forma, dizemos que o elemento possui velocidade angular constante ou movimento circular uniforme.

Consideramos que os elementos girantes possuem pequenas deformações, de modo que todos os pontos desses elementos percorrem uma volta no mesmo intervalo de tempo, o tempo total de um ciclo que denominamos período (T).

Damos o nome de frequência (n) ao número de rotações em determinado intervalo de tempo. Exemplos: rotações por minuto (rpm), rotações por segundo (rps) etc. Frequência e período são grandezas inversamente proporcionais segundo a relação:

 $n = \frac{1}{T}$

Pela definição de movimento circular uniforme, a velocidade tangencial (V) é constante:

$$V = \frac{S}{t} = \frac{2\pi r}{T} = \pi \cdot d \cdot \frac{1}{T} = \pi \cdot d \cdot n \Rightarrow V = \pi dn \left(\frac{m}{s}\right)$$

em que:

d = diâmetro (m)

n = frequência (rps = rotações por segundo)

Como a maioria dos dispositivos mecânicos, usualmente sua frequência é indicada em rotações por minuto (rpm). A equação da velocidade torna-se:

$$V = \frac{\pi \cdot d \cdot n}{60} \left(\frac{m}{s}\right), \text{ em que: } n = \text{rotações por minuto (rpm)}$$

Transmissões de movimentos circulares uniformes

Podemos dizer que os tipos de transmissão de movimento circular mais comuns na mecânica ocorrem por meio de pares de engrenagens, polias, correias ou correntes.

O esquema a da figura 3.1 mostra um par de engrenagens, e o esquema b, a representação de um sistema que utiliza polias ligadas por correia.

Assumindo a hipótese de que não há escorregamento, as velocidades tangenciais desses elementos necessariamente são iguais, ou seja:

$$V_1 = V_2 = V = \pi \cdot d \cdot n$$

Portanto, para as engrenagens (1) e (2), temos:

$$\pi d_1 n_1 = \pi d_2 n_2 \Longrightarrow \frac{n_1}{n_2} = \frac{d_2}{d_1}$$
 (I)

CAPÍTULO 3

to de uma circuneguinte relação:

Figura 3.1

a) Representação de um par engrenado; b) sistema que utiliza polias ligadas por uma correia.

A equação (I) é definida como a relação de transmissão de (1) para (2), e se expressa como $i_{1,2}$.

Logo:
$$i_{1,2} = \frac{n_1}{n_2}$$
 ou $i_{1,2} = \frac{d_2}{d_1}$

Exemplo

Duas polias ligadas por correias têm diâmetro $d_1 = 20$ cm e $d_2 = 40$ cm. Sabendo que a primeira possui frequência igual a 50 rpm, calcular a rotação da segunda polia e a velocidade linear dos pontos da correia em metros por minuto. Um desenho esquemático do sistema pode ser observado na figura 3.2.

Figura 3.2 Exemplo de transmissão por meio de polias ligadas por correia.

Solução:

Como sabemos,
$$\frac{n_1}{n_2} = \frac{d_2}{d_1} \Rightarrow \frac{50}{n_2} = \frac{40}{20} \Rightarrow n_2 = \frac{20 \cdot 50}{40} \Rightarrow n_2 = 25 \text{ rpm}$$

A velocidade V, em um ponto da correia, é a mesma que nos pontos tangentes às polias.

Portanto:

$$V = \pi \cdot d_1 n_1 = \pi \cdot 20 \cdot 50 = 1000 \pi \Rightarrow V = 3142 \frac{\text{cm}}{\text{min}} \Rightarrow V = 31,42 \frac{\text{m}}{\text{min}}$$

Relação de transmissão total

Em diversas aplicações, quando desejamos obter determinado torque ou determinada rotação, utilizamos caixas de redução. Exemplo disso é a transmissão (câmbio) de um automóvel.

Conhecida a rotação do motor transmitida por diversos pares de polias e engrenagens, podemos determinar qual é a rotação de saída, ou seja, a relação de transmissão total (i_t).

No sistema indicado na figura 3.3, é possível equacionar e determinar de modo literal a relação total do conjunto (it). Dessa forma, partindo do motor, temos:

$$_{1,2} = \frac{\mathbf{n}_1}{\mathbf{n}_2} \Longrightarrow \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{n}_2$$

A polia de número 2 e a engrenagem de número 3 são solidárias ao mesmo eixo. Desse modo, concluímos que a rotação n_2 é igual à rotação n_3 . A relação entre as engrenagens 3 e 4 é dada por:

$$\mathbf{i}_{3,4} = \frac{\mathbf{n}_3}{\mathbf{n}_4} \Longrightarrow \mathbf{n}_3 = \mathbf{i}_{3,4} \cdot \mathbf{n}_4$$

As engrenagens 4 e 5, por estarem acopladas ao mesmo eixo, têm também a mesma frequência de rotação. Portanto, $n_4 = n_5$. A relação do último engrenamento (engrenagens 5 e 6) é obtida por:

$$\mathbf{i}_{5,6} = \frac{\mathbf{n}_5}{\mathbf{n}_6} \Longrightarrow \mathbf{n}_5 = \mathbf{i}_{5,6} \cdot \mathbf{n}_6$$

Figura 3.3

Conjunto de polias e engrenagens: a) | e 2 são representações esquemáticas da vista superior das polias; b) 3, 4, 5 e 6 são representações esquemáticas da vista superior das engrenagens.

Substituindo as equações a fim de obter uma única equação, temos:

$$\begin{array}{lll} \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{n}_2 & \Rightarrow & \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{n}_3 & \Rightarrow & \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{i}_{3,4} \cdot \mathbf{n}_4 \\ \Rightarrow & \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{i}_{3,4} \cdot \mathbf{n}_4 & \Rightarrow & \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{i}_{3,4} \cdot \mathbf{n}_5 & \Rightarrow & \mathbf{n}_1 = \mathbf{i}_{1,2} \cdot \mathbf{i}_{3,4} \cdot \mathbf{i}_{5,6} \cdot \mathbf{n}_6 \end{array}$$

Dessa forma, notamos que $i_t = i_{1,2} \cdot i_{3,4} \cdot i_{5,6}$. Assim, $n_1 = i_t \cdot n_6$.

Concluímos que a relação de transmissão total é o produto das relações de transmissões parciais.

Nesse exemplo, temos ainda:

Frequência do motor = $n_m = n_1$ e frequência de saída = $n_s = n_6$

Substituindo em $n_1 = i_t \cdot n_6 \Rightarrow n_m = i_t \cdot n_s$

Portanto, n_s (rotação de saída) = $\frac{n_m}{i_t}$.

3.1.2 Rendimento em transmissões mecânicas

Durante um processo de transmissão mecânica real, notamos que a energia disponível (trabalho) que entra no sistema deveria ser igual à energia disponível que se obtém na saída desse dispositivo. Entretanto, observamos que essa energia disponível na saída (E_s) é sempre menor que a energia disponível de entrada (E_e).

Como a energia em determinado sistema se conserva (princípio da conservação da energia), uma parte dela é transformada em calor, normalmente devido a atritos (entre partes girantes ou escorregamento), ou a imperfeições geométricas, como excentricidade, tolerâncias (nenhum elemento é perfeito). A diferença entre as energias de entrada (E_e) e de saída (E_s) é a energia perdida (E_p) sob a forma de calor, referente às resistências passivas.

Em situações mais realistas, devemos contabilizar esse desvio de energia. Isso é realizado com base na definição de rendimento (η) de uma máquina. O rendimento é a relação entre as energias de saída (E_s) e de entrada (E_e). Portanto:

Como as perdas são inevitáveis, temos sempre $\eta < 1$.

Se um conjunto é composto por várias máquinas, conforme indicado na figura 3.4, o rendimento total (η_t) é dado por:

Substituindo E_1 da equação (1) na equação (2) e depois E_2 da equação (2) na equação (3), e assim sucessivamente, temos na enésima equação:

$$\mathsf{E}_{\mathsf{s}} = \eta_1 \cdot \eta_2 \cdot \eta_3 \dots \eta_n \cdot \mathsf{E}_{\mathsf{e}} = \eta_t \cdot \mathsf{E}_{\mathsf{e}} \quad \mathsf{E}_{\mathsf{s}} = \eta_1 \cdot \eta_2 \dots \eta_n \cdot \mathsf{E}_{\mathsf{e}} = \mathsf{E}_{\mathsf{s}} = \mathsf{E}_{\mathsf{$$

em que, $\eta_1 \cdot \eta_2 \cdot \eta_3 \dots \eta_n = \eta_t$

Conclui-se, então, que o rendimento total é o produto dos rendimentos parciais.

A tabela 3.1 apresenta alguns dados aproximados de rendimentos que podem ser utilizados como referência.

Mancais de rolamento (par)	η = 0,
Mancais de deslizamento (par)	0,95 ≤
Transmissões por correias	0,96 ≤
Transmissões por correntes	0,95 ≤
Transmissões por cabos	0,94 ≤
Transmissões por engrenagens cilíndricas	0,97 ≤
Transmissão por rosca sem fim	0,45≤

Figura 3.4

Conjunto composto de diversas máquinas em série.

 $= \eta_t \cdot E_e$

99

- ≤ η ≤ 0,98
- ≤ η ≤ 0,98
- $\leq \eta \leq 0,98$
- $\leq \eta \leq 0,96$
- $\leq \eta \leq 0,98$

≤ η ≤ 0,97

Tabela 3.1Rendimentos aproximadospor dispositivo

3.1.3 Momento torçor ou torque

Em aplicações mecânicas, conhecida a potência (N) em quilowatts (kW) e a frequência (n) em rotações por minuto (rpm), é possível determinar uma equação relacionando a frequência e a potência com o momento torçor (M_t) ou torque.

Partimos da definição de potência (N):

$$N = \frac{\text{trabalho}}{\text{tempo}} = \frac{F \cdot S}{t} = F \cdot \frac{S}{t} = F \cdot v$$

em que:

N = potência (W)F = força (N)S = espaço(m)t = tempo (s) $v = velocidade\left(\frac{m}{s}\right) = \left(\frac{s}{t}\right)$

Portanto, $N = F \cdot v$ (I)

Para uma seção circular, conforme indicado na figura 3.5, o torque em uma transmissão desse tipo é dado por:

$$M_t = F \frac{d}{2} \Longrightarrow F = \frac{2M_t}{d}$$

Figura 3.5 Indicação das dimensões e forças.

A velocidade tangencial é igual a $v = \pi \cdot d \cdot n$. Substituindo na equação (I), obtemos:

$$N = \frac{2M_{t}}{d} \cdot \pi \cdot d \cdot n = 2\pi \cdot M_{t} \cdot n$$
Portanto, $M_{t} = \frac{1}{2\pi} \cdot \frac{N}{n}$. (II)

No Sistema Internacional (SI), como normalmente a potência é dada em quilowatts e a frequência em rotações por minuto, a equação (II) do momento torçor é dada por:

$$M_{t} = \frac{60 \cdot 1000}{2\pi} \cdot \frac{N}{n} = 9\ 550\ \frac{N}{n}$$

em que:

N = potência (kW)n = frequência (rpm) $M_t = torque (N \cdot m)$

No sistema MK*S (técnico), com a potência em cavalo-vapor (cv) e frequência em rotações por minuto (rpm), a equação (II) torna-se:

$$M_{t} = \frac{60 \cdot 75}{2\pi} \cdot \frac{N}{n} = 716, 2 \cdot \frac{N}{n} \implies M_{t} = 716, 2 \cdot \frac{N}{n}$$

em que:

 $N = potencia (cv) (1 cv = 75 kgf \cdot m/s)$ n = frequência (rpm) $M_t = torque (kgf \cdot m)$

Exemplo

Na transmissão mecânica da figura 3.6, determinar:

a) o valor da rotação e a potência na engrenagem (3); b) o torque de saída do redutor.

Dados:

 $N_{motor} = 20 \text{ cv}; n_{motor} = 870 \text{ rpm}; i_{1,2} = 2; i_{redutor} = 18; \eta_{correlas} = 0,97;$

 $\eta_{\text{par de mancais}} = 0,99; \eta_{\text{redutor}} = 0,91.$

CAPÍTULO 3

Figura 3.6

Solução

a) A rotação da polia (1) é a mesma que a rotação do eixo motor.

Portanto: $n_1 = n_m = 870 \text{ rpm}$

$$i_{1,2} = \frac{n_1}{n_2} \Rightarrow n_2 = \frac{n_1}{i_{1,2}} = \frac{870}{2} = 435 \Rightarrow n_2 = 435 \text{ rpm}$$

A rotação na polia (2) é a mesma que na engrenagem (3), porque os eixos estão acoplados e giram juntos.

 $n_2 = n_3 = 435 \text{ rpm}$

A potência na engrenagem (3) é obtida após considerar as perdas na transmissão por correias e por dois pares de mancais.

 $\mathrm{Portanto}, \, N_3 = N_{motor} \cdot \eta_{correias} \, \eta^2_{\, \text{par de mancais}} = 20 \cdot 0,97 \cdot 0,99^2 \Longrightarrow N_3 = 19 \text{ cv}.$

b) Para calcular o torque de saída, precisamos da potência e frequência de saída.

• Cálculo da potência de saída (N_s):

 $N_s = N_m \cdot \eta_{\text{correias}} \ \eta_{\text{par de mancais}} \cdot \eta_{\text{redutor}} = 20 \cdot 0,97 \cdot 0,99 \cdot 0,91 \cong 17,5 \ \text{cv}$

• Cálculo da rotação de saída (n_s):

$$i_t = \frac{n_m}{n_s} \Rightarrow n_s = \frac{n_m}{i_t} = \frac{870}{36} = 24, 2 \Rightarrow n_s = 24, 2 \text{ rpm}$$

em que: $i_t = i_{1,2} \cdot i_{redutor} = 2 \cdot 18 = 36$

• Cálculo do torque de saída:

$$M_{t_s} = 716, 2 \frac{N_s}{n_s} = 716, 2 \cdot \frac{17,5}{24,2} = 517,9 \Rightarrow M_{t_s} \cong 518 \text{ kgf} \cdot \text{r}$$

3.2 Motor elétrico

Motor elétrico é a máquina que tem a função de transformar energia elétrica em energia mecânica. Existem diversos tipos de motores elétricos, que podem ser vistos com mais detalhes no capítulo 1 do livro 3, *Eletroeletrônica para Mecânica*.

Os motores de indução de corrente alternada, trifásica, assíncrona de gaiola ou de anéis, que funcionam com velocidade praticamente constante e cuja carga aplicada ao eixo varia muito pouco, são os mais adequados para quase todos os tipos de máquinas acionadas.

Na figura 3.7, podemos observar a geometria de um motor elétrico em corte.

m

Figura 3.7 Motor elétrico em corte.

Quando não existe carga no motor (em vazio), o eixo gira praticamente com a rotação síncrona (n_s) , que é dada pela equação:

$$n_s = \frac{120 \cdot f}{p}$$

em que:

f = frequência p = número de polos

Por exemplo, em um motor de 4 polos, 60 Hz, a rotação síncrona será de:

$$n_s = \frac{120 \cdot 60}{4} = 1\,800 \Rightarrow n_s = 1\,800 \text{ rpm}$$

Observamos que, à medida que aumenta a carga na ponta de eixo, cai a rotação do motor, e denominamos a diferença entre a rotação síncrona (n_s) e a rotação com carga n de **escorregamento (S) do motor**, que pode ser expresso em rpm ou como fração em porcentagem da velocidade síncrona.

s (rpm) =
$$n_s - n \text{ ou } s(\%) = \frac{n_s - n}{n_s} \cdot 100$$

Por exemplo, o escorregamento em porcentagem de um motor de 8 polos, com rotação de **870 rpm**, é de:

$$s = \frac{900 - 870}{900} \cdot 100 \Longrightarrow s = 3,3\%$$

3.2.1 Conjugado do motor

O conjugado do motor é o momento torçor ou torque gerado pelo motor elétrico. Em um motor normal, a representação gráfica do conjugado (C) em relação à rotação (n) é uma curva com características similares às da figura 3.8.

Na curva destacamos quatro pontos importantes, que são definidos por:

 C_p – conjugado com rotor bloqueado ou conjugado de partida. Deve ser o maior possível, para que possa vencer a inércia inicial da carga.

 C_{min} – conjugado mínimo. É o menor conjugado desenvolvido pelo motor ao acelerar desde a velocidade zero até a velocidade correspondente ao conjugado máximo. Se esse valor é pequeno, a partida pode ser demorada e sobreaquecer o motor nos casos de alta inércia.

 C_{max} – conjugado máximo. É o maior conjugado desenvolvido pelo motor e deve ser capaz de vencer eventuais picos de carga, como em britadores, misturadores etc.

 C_n – conjugado nominal ou de plena carga. É o conjugado desenvolvido pelo motor à potência nominal, sob tensão e frequência nominais.

Os motores de indução trifásicos com rotor de gaiola são classificados em categorias, cada uma adequada a um tipo de carga, definidas em norma da ABNT-NBR 7094. São elas:

Categoria N – Conjugado e corrente de partida normal e baixo escorregamento. São características da maioria dos motores encontrados no mercado usados em bombas, máquinas operatrizes, ventiladores etc.

Categoria H – Conjugado de partida alto e baixo escorregamento. Motores utilizados para cargas que exigem maior conjugado de partida, como britadores, cargas de alta inércia, transportadores de cargas etc.

Categoria D – Conjugado de partida alto, alto escorregamento (mais de 5%). Motores usados para acionar prensas excêntricas, elevadores e cargas que necessitam de conjugados de partida muito altos.

As curvas de conjugado em função da rotação para cada categoria são indicadas na figura 3.9.

Figura 3.8

Representação gráfica do conjugado (C). Os valores dos conjugados relativos a esses pontos são especificados pela norma da ABNT-NBR 7094.

ificados em cate

Figura 3.9

Curvas de conjugado em função da rotação para diferentes categorias.

3.2.2 Elementos de transmissão

Os elementos de transmissão, como as polias e os acoplamentos, precisam ser balanceados dinamicamente antes de instalados e estar perfeitamente alinhados entre si. Pode ser feita, porém, uma avaliação estática das polias, de forma simples, com auxílio de uma régua de alinhamento, para verificar se a régua encosta nas duas faces da polia simultaneamente. Esses dispositivos bem como sua respectiva simbologia são indicados na figura 3.10.

Figura 3.10 Representação de montagem de uma correia.

Na figura:

f = flecha ou deflexão; C = distância entre centros das polias.

A tensão na correia precisa ser suficiente apenas para evitar o escorregamento enquanto funciona. O valor da flecha recomendado é de aproximadamente 1% da distância entre centros, ou seja, $f = 0,010 \cdot C$ (consultar catálogo de correias). A figura 3.11 representa esquematicamente as cargas aplicadas pela polia no eixo do motor.

Na figura:

 F_r = força radial;

 $F_a =$ força axial;

x = distância entre o encosto da polia no eixo até a metade da largura da polia.

Os valores permitidos das cargas axiais e radiais, bem como o diâmetro da polia motora, devem ser consultados em manuais ou catálogos de fabricantes. Os limites definidos não devem ser ultrapassados, a fim de evitar graves consequências nos rolamentos ou no eixo do motor.

Casos os valores calculados no projeto não atendam os dados especificados nos manuais, o fabricante deve ser consultado para dar uma solução mais apropriada.

Na maioria das vezes, a solução consiste em modificar o tipo de rolamento, substituir o material do eixo ou, em último caso, colocar um acoplamento na ponta de eixo, fazendo com que a carga atue em outro eixo, independente do motor.

Figura 3.11

Cargas aplicadas pela polia no eixo do motor.

As informações foram obtidas no manual de motores elétricos da WEG Motores Ltda.

3.2.3 Placa de identificação

A placa de identificação contém informações úteis, como o tamanho da carcaça, a categoria, a frequência e, principalmente, a potência e a rotação nominal do motor. Essas informações são necessárias para o cálculo do momento torçor (torque), utilizado como base de qualquer dimensionamento.

3.3 Correias e polias

A correia é um elemento de transmissão de potência e movimento entre dois eixos paralelos ou reversos. Sua construção é simples e apresenta grandes vantagens em relação a outros tipos de transmissão, como:

- funcionamento silencioso;
- por ser flexível, absorve choques e vibrações;
- rendimento de 95% a 98%;
- adequada para grandes distâncias entre os centros das polias;
- serve como proteção de sobrecarga, pela possibilidade de deslizamento;
- não necessita de lubrificação.

Uma das principais razões para optar por esse tipo de transmissão é o fato de ser mais econômico, tanto na instalação, quanto na manutenção.

As correias apresentam inúmeras vantagens, mas em compensação possuem limitações, tais como:

- vida útil menor;
- escorregamento de 1% a 3%;
- não são compactas;
- as cargas nos mancais são maiores.
- não funcionam bem em velocidades muito altas.

O esquema a da figura 3.12 mostra a configuração de montagem para eixos paralelos, e o esquema b, a condição de montagem para eixos reversos.

Figura 3.12

a) Condição de montagem para eixos paralelos; b) condição de montagem para eixos reversos.

3.3.1 Classificação de correias e polias

Em princípio, as correias se classificam segundo a forma de sua seção transversal. Temos correias chatas (seção retangular) e correias V (seção trapezoidal).

Em consequência, as polias utilizadas na transmissão por correias são de dois tipos: polias lisas, que possuem a superfície lisa e abaulada na face de apoio da correia, e polias ranhuradas, que possuem a superfície com canais trapezoidais.

As correias planas, para eixos paralelos ou reversos, podem ser usadas com relações de transmissão até 5 (em casos extremos, até 10). As correias em V, para eixos paralelos, são utilizadas com relações de transmissão até 8 (em casos extremos, até 15).

3.3.2 Esforços na correia

Algumas dimensões importantes em transmissão por polias são indicados na figura 3.14.

Figura 3.13

- a) Polia ranhurada;
- b) polia lisa.

Figura 3.14

Dimensões principais em transmissão por polias.

Nomenclatura:

- d = diâmetro da polia motora;
- D = diâmetro da polia movida;
- C = distância entre centros das polias;
- μ = coeficiente de atrito entre a correia e a polia plana;
- α = ângulo de abraçamento da polia menor (rad);
- M_t = momento torçor;
- $T_0 =$ força estática de esticamento;
- T_1 = força de tração no lado tenso;
- T_2 = força de tração no lado bambo;
- F = força tangencial de atrito;
- R = força radial resultante.

Para evitar escorregamento, as correias devem necessariamente ser tensionadas durante a montagem. Assim, em condições estáticas, a correia está sob ação de uma força de tração (T₀). Como o motor está desligado, esse carregamento possui a mesma intensidade em ambos os lados, conforme mostra a figura 3.15.

Figura 3.15 Montagem e condição estática.

Em funcionamento, o conjugado desenvolvido pelo motor provoca um desequilíbrio entre as forças T_0 . Dessa forma, temos:

$$T_1 = T_0 + \frac{F}{2} e T_2 = T_0 - \frac{F}{2}$$

 $T_1 - T_2 = F$

Sendo F a força tangencial de atrito definida pelo conjugado do motor, temos:

$$\mathsf{M}_{\mathsf{t}} = \frac{\mathsf{F} \cdot \mathsf{d}}{2} \Longrightarrow \mathsf{F} = \frac{2\mathsf{M}_{\mathsf{t}}}{\mathsf{d}} = \mathsf{T}_{\mathsf{1}} - \mathsf{T}_{\mathsf{2}} \quad (\mathrm{I})$$

Segundo a lei de Euler, tem-se a condição para o não escorregamento das correias sobre a polia:

 $\frac{\mathsf{T}_1}{\mathsf{T}_2} \le \mathsf{e}^{\mu\alpha}$

em que: e = 2,72 (base dos logaritmos neperianos).

Na condição limite, temos:

$$\frac{\mathsf{T}_1}{\mathsf{T}_2} = \mathbf{e}^{\mu\alpha} \Longrightarrow \mathsf{T}_1 = \mathsf{T}_2 \cdot \mathbf{e}^{\mu\alpha} \quad (\mathrm{II})$$

Substituindo (II) em (I), resulta:

$$T_1 - T_2 = F \Rightarrow T_2 e^{\mu \alpha} - T_2 = F \Rightarrow T_2 (e^{\mu \alpha} - 1) = F \Rightarrow T_2 = F$$
$$T_1 = F + T_2$$

Com T_1 e T_2 , podemos calcular o valor da força resultante (R) utilizando o teorema dos cossenos:

$$R_2 = T_1^2 + T_2^2 + 2T_1T_2 \cos\beta$$

em que: $\alpha + \beta = 180^{\circ} \Rightarrow \beta = 180^{\circ} - \alpha$

$$\beta = 2\delta e \operatorname{sen} \delta = \frac{\mathsf{D} - \mathsf{d}}{2 \cdot \mathsf{C}}$$

Exemplo

Na transmissão proposta, determinar a força radial na ponta de eixo do motor elétrico.

Dados: N= 25 cv; Nm = 1 165 rpm; D = 360 mm; d = 180 mm; C= 450 mm; $\mu = 0,5$ (correias trapezoidais).

$$sen\delta = \frac{D-d}{2C} = \frac{360 - 180}{2 \cdot 450} = \frac{180}{900} = 0, 2 \Longrightarrow \delta \cong 11, 5^{\circ}$$
$$\beta = 2\delta = 2 \cdot 11, 5 = 23^{\circ}$$

$$\alpha = 180^{\circ} - \beta = 180^{\circ} - 23^{\circ} = 157^{\circ} \Rightarrow \alpha = 157^{\circ} \Rightarrow \alpha = \frac{157^{\circ}}{180^{\circ}}$$

$$\frac{T_1}{T_2} = e^{\mu\alpha} = e^{0.5 \cdot 2.74} = e^{1.37} = 3,94$$
$$T_1 = 3,94 \cdot T_2$$
$$M_t = 716200 \cdot \frac{N}{m} = 716200 \cdot \frac{25}{1165} = 15369 \text{ kgf} \cdot \text{mm}$$

$$\frac{F}{e^{\mu\alpha}-1}e$$

 $\frac{7^{\circ} \cdot \pi}{30^{\circ}} = 2,74 \text{ rad}$

$$M_t = F \cdot \frac{d}{2} \Longrightarrow F = \frac{2M_t}{d} = \frac{2 \cdot 15369}{180} \simeq 171 \text{ kgf}$$

Portanto, F = 171kgf
Sabendo que T₂ =
$$\frac{F}{e^{\mu\alpha} - 1} = \frac{171}{e^{0.5 \cdot 2.74} - 1} = \frac{171}{3,94 - 1} \Rightarrow T_2 = 58 \text{ kgf}$$

 $T_1 = 3,94 \cdot T_2 \cong 229 \Longrightarrow T_1 = 229 \text{ kgf}$

 $\mathsf{R}^2 = 229^2 + 58^2 + 2 \cdot 229 \cdot 58 \cdot \cos 23^\circ \Longrightarrow$

 $\Rightarrow R^2 = 52\,441 + 3\,364 + 24\,439 = 80\,244$

 $R\cong 283\,kgf\ {\rm ou}\ R\cong 2\,773\,N$

3.3.3 Cálculo de transmissão por correia em V

Como a correia é um elemento normalizado, seu dimensionamento é de responsabilidade do fabricante. Sendo assim, é um elemento que deve ser selecionado. O método de seleção normalmente é indicado nos catálogos e manuais fornecidos pelos fabricantes.

Vamos mostrar um exemplo de como é determinado o número de correias do tipo V, para a transmissão indicada na figura 3.16.

Exemplo

São necessárias as seguintes informações:

a) tipo do motor;
b) potência do motor;
c) rotação do motor;
d) tipo de máquina ou equipamento acionado;
e) rotação da máquina;
f) distância entre centros;
g) tempo de trabalho diário da máquina.

Dados:

- motor AC de alto torque;
- $N_m = 25 hp;$
- n_m = 1 160 rpm;
- carcaça: 180 L;
- máquina acionada: britador;
- tempo de serviço: 8 h/dia;
- perfil da correia em V: correias super HC da Gates;
- relação de transmissão: 2.

1. Determinar a potência projetada (HPP).

Solução

$$HPP = HP \cdot F_s$$

em que:

HP = 25 hp (potência do motor) $F_s = \text{fator de serviço}$

Máquina conduzida (britador) Máquina condutora (motor AC, alto torque)

 $\xrightarrow{\text{do gráfico 1}} \text{perfil 5V}$

Serviço normal: $HPP = 25 \cdot 1,6 = 40 \text{ hp}$

2. Determinar o perfil apropriado

Solução

HPP = 40 hp $n_m = 1 160 rpm$

Figura 3.16 Exemplo de seleção de correia do tipo V.

3. Determinar os diâmetros das polias.

Solução

$$\begin{array}{c} N = 25 \text{ hp} \\ n_m = 1 160 \text{ rpm} \end{array} \end{array} \right\} \quad \begin{array}{c} \underline{\text{da tabela 2}} \\ \underline{\text{da tabela 2}} \\ \end{array} \\ \rightarrow d_{min} = 6" = 152,4 \text{ mm} \end{array}$$

Adotaremos
$$d = 180$$
 mm.

 $\operatorname{Como} i_{1,2} \Longrightarrow D = d \cdot i = 180 \cdot 2 = 360,$

4. Determinar o comprimento experimental da correia (L).

Solução

$$L = 2C + 1,57 (D + d) + \frac{(D - d)^2}{4C}$$

$$C = \frac{3d + D}{2} = \frac{3 \cdot 180 + 360}{2} = 450$$

$$L = 2 \cdot 450 + 1,57 (360 + 180) + \frac{(360 - 180)^2}{4 \cdot 450}$$

$$L = 900 + 847,8 + 18 = 1765,8$$

$$L = 1765,8 \text{ mm}$$
5. Escolher a correia adequada.
Solução:

$$L = 1765,8 \text{ mm perfil 5V} \qquad \underline{\text{tabela 4}} \rightarrow L_c = 1805 \text{ (ref. 5 V710)}$$

6. Recalcular a distância entre centros (DC).

Solução

$$\mathsf{DC} = \frac{\mathsf{A} - \mathsf{h}(\mathsf{D} - \mathsf{d})}{2}$$

$$A = L_{c} - 1,57 (D + d) = 1805 - 1,57 (360 + 180)$$

$$A = 957,2 \text{ mm}$$

$$\frac{D - d}{A} = \frac{360 - 180}{957,2} = 0,188 \qquad \xrightarrow{\text{tabela 6}} h \cong 0,09$$

$$DC = \frac{957,2 - 0,09(360 - 180)}{2} \approx 470,5$$

$$DC = 470,5 \text{ mm}$$

7. Determinar a potência transmitida por correia (hp).

Solução

$$hp = (hp_{b} + hp_{a}) \cdot F_{c} \cdot F_{g} (HP)$$

$$\begin{array}{l} n_m = 1160 \ \text{rpm} \\ d = 180 \ \text{mm} \\ i = 2 \end{array} \end{array} \right\} \xrightarrow{\text{tabela 11}} \begin{array}{l} \text{hp}_b = 11,5 \ \text{HP} \\ \text{hp}_a = 1,27 \ \text{HP} \end{array} \\ \\ 5 \ \text{V710} \qquad \underline{\text{tabela 7}} \\ \hline 5 \ \text{V710} \qquad \underline{\text{tabela 7}} \\ \hline 0 \\ DC \end{array} \\ = \frac{360 - 180}{470,5} = 0,38 \qquad \underline{\text{tabela 9}} \\ \hline \text{tabela 9} \\ \hline \text{hp} = (11,5 + 1,27) \cdot 0,91 \cdot 0,94 = 10,92 \Rightarrow \text{hp} = 10,92 \ \text{HF} \end{array}$$

8. Determinar o número necessário de correias (N).

$$N = \frac{HPP}{hp} = \frac{40}{10,92} = 3,66 \Rightarrow N = 4 \text{ correias}$$

Concluímos que, para essa transmissão, são necessárias 4 correias de perfil 5 V.

3.3.4 Desenho da polia

Como as dimensões dos canais da polia já estão padronizadas, podemos elaborar o desenho da polia, considerando o diâmetro da ponta de eixo (48k6), onde vai alojar-se a polia, obtido do catálogo de motores elétricos para carcaça 180 L, conforme indicado na figura 3.17.

Ρ

Figura 3.17

Polia para 4 correias de perfil 5 V, calculado na seção 3.5.

3.4 Cabos de aço

Cabos de aço são elementos flexíveis, que resistem apenas à tração. Segundo seu uso, podem ser classificados em cabos de movimento e cabos estacionários.

Os cabos de movimento são caracterizados pela frequente mudança de direção. Ora são enrolados em tambores, ora curvam-se nas polias endireitando-se em seguida para continuar em movimento linear. Exemplos são os cabos empregados em pontes rolantes, elevadores e guindastes.

Os cabos estacionários, ou fixos, são usados como tirantes em pontes, linhas de transmissão e estruturas metálicas.

3.4.1 Construção e tipos de cabos

Os cabos de aço são constituídos de pernas enroladas em hélice ao redor de uma alma de fibras naturais (AF) ou artificiais (AFA), que, em casos muito solicitados, pode ser de aço (AA). As pernas são formadas por fios ou arames de aço também enrolados em hélice. O esquema da figura 3.18 mostra a nomenclatura dos itens que constituem um cabo de aço.

Conforme a direção em que os cabos e os fios das pernas são torcidos podemos ter:

- a) torção à direita: as pernas são torcidas da esquerda para a direita;
- b) torção à esquerda: as pernas são torcidas da direita para a esquerda;
- c) torção regular: os fios de cada perna são torcidos em sentido oposto à torção das pernas;
- d) torção Lang: os fios de cada perna são torcidos no mesmo sentido da torção das pernas.

A figura 3.19 mostra o esquema para os diferentes tipos de torção.

Figura 3.18

Nomenclatura dos elementos que constituem um cabo de aço.

Arame central

Lang à esquerda

Figura 3.19

Diferentes tipos de torção na região das pernas do cabo de aço.

As almas de fibras naturais são normalmente de sisal ou rami e as de fibras artificiais são em geral de polipropileno, usado apenas em casos especiais. A figura 3.20 mostra alguns exemplos de almas de cabo de aço.

As almas de fibra natural geralmente dão maior flexibilidade e funcionam como depósito de lubrificante para o cabo de aço, mas as de almas de aço fornecem maior resistência aos amassamentos e aumentam a resistência à tração.

Figura 3.20 Exemplos de almas de cabos de aço.

3.4.2 Formas construtivas de cabos

As fabricações mais comuns das pernas inteiramente metálicas, compostas por um conjunto de camadas de fios de igual passo, colocados em várias disposições, deram origem às construções dos Seale, Warrington e o Filler.

Quanto maior o número de fios para um mesmo diâmetro de cabo, maior sua flexibilidade. Se os fios externos, porém, são muito finos, desgastam-se e rompem-se mais facilmente.

A figura 3.21 mostra algumas formas construtivas de cabos.

3.4.3 Informações úteis

1) O cabo deve ser medido conforme indica a figura 3.22.

2) A fixação deve ser feita por meio de grampos do tipo pesado, com a base colocada para o lado do trecho mais comprido do cabo, como mostra a figura 3.23.

3.4.4 Dimensionamento dos cabos de movimento

A dimensão dos cabos de movimento deve ser realizada conforme a norma DIN15020.

O diâmetro mínimo ($d_{mín}$) é dado pela equação:

$$d_{min} = k \cdot \sqrt{F}$$

sendo:

F

 \mathbf{k} = fator de trabalho, indicado pela tabela 3.2;

$$= \text{solicitação do cabo em } \frac{\text{mm}}{\sqrt{\text{kgf}}}$$

Figura 3.22

Método para medição do cabo de aço.

Figura 3.23

Método correto para fixação por meio de grampos.

Grupo da transmissão por cabo	Número de ciclos por hora	Valores mínimos de k em <u>mm</u> <u>√kgf</u>
0	até 6	0,28
I	de 6 a 18	0,30
2	de 18 a 30	0,32
3	de 30 a 60	0,35
4	acima de 60	0,38

Tabela 3.2

Valores para o fator de trabalho (**k**). Os valores de k foram calculados para cabos de aço que possuem:

 $\sigma_r = 160 \frac{\text{kgf}}{\text{mm}^2}$ e coeficiente de segurança (k_s) de 4,5 ≤ k_s ≤ 8,3.

Tabela 3.3

Diâmetro mínimo do tambor e da polia.

Os diâmetros mínimos do tambor e das polias são obtidos com base na relação com o diâmetro do cabo, conforme a tabela 3.3.

Grupo		Valores mínimos <mark>D</mark> d	
	Tambor	Polia	Polia compensadora
0	15	16	14
I.	18	20	14
2	20	22	15
3	22	24	16
4	24	26	16

Exemplo

Determinar o diâmetro e as características do cabo de aço para aplicação em uma ponte rolante, para uma talha de 4 cabos, conforme a figura 3.24, que apresenta as seguintes características:

- capacidade: Q = 20000 kgf;
- número de ciclos por hora = 12;
- rendimento da talha = 0,97;
- peso da talha = 360 kgf.

Solução

A força de tração F na entrada do tambor é dada por:

$$\mathsf{F} = \frac{20\,000 + 360}{4 \cdot 0,97} = 5\,247\,\mathrm{kgf}$$

Com 12 ciclos por hora, obtemos da tabela 3.2 o valor de k = 0,30. Dessa forma:

$$d_{mim} = k \cdot F = 0,30 \sqrt{5247} = 21,7 \cdot d_{min} = 21,7 \text{ mm}$$

Optando pelos cabos para pontes rolantes da empresa Cimaf, concluímos que eles apresentam as seguintes características:

Diâmetro de 7/8", tipo Filler AF 6×41 .

De acordo com a tabela 3.3, o diâmetro mínimo do tambor é dado por:

$$\frac{D_t}{d} = 18 \Longrightarrow D_t = 18 \cdot d$$

 $D_t = 18 \cdot 22 \cdot 2 = 399,6$

 $\therefore D_t = 400 \text{ mm}$

3.5 Correntes

Assim como os demais elementos já vistos, as correntes também transmitem potência e movimento. Neste estudo vamos considerar apenas correntes de rolos, no acionamento de um ou mais eixos paralelos, com as engrenagens contidas em um mesmo plano, a partir de uma única engrenagem ou roda dentada motora.

A figura 3.25 mostra a representação esquemática e a nomenclatura dos elementos.

Figura 3.25 Representação esquemática e nomenclatura dos elementos.

Como nessa transmissão não ocorre deslizamento, a relação de transmissão pode ser de até 7 e possui rendimento de 97% a 98%.

Se houver necessidade de uma relação de transmissão maior que 7, deverá ser estudada uma relação dupla, conforme mostra a figura 3.26.

Figura 3.26 Relação dupla.

Para ter uma transmissão com menos cargas de choque e desgaste, limita-se o número de dentes das engrenagens: maior que 9 e menor que 120.

3.5.1 Definições e componentes de uma corrente

Uma corrente de transmissão é composta de elos externos e elos internos, montados alternadamente, conforme se observa na figura 3.27.

No trecho da corrente dupla de rolos da figura 3.28, temos:

p = passo da corrente; D = diâmetro do rolo; W = largura entre placas; **d** = diâmetro do pino; $p_t = passo transversal.$

Pode-se obter o comprimento da corrente em número de passos (L_p) , por meio da equação:

$$-_{p} = 2C_{p} + \frac{z_{1} + z_{2}}{2} + \frac{(z_{2} - z_{1})^{2}}{4\pi^{2} \cdot C_{p}}$$

em que:

$$C_p = \frac{C}{p};$$

C = distância entre centros (30 a 50 p);

 $C_p = \text{distância entre centros em passos;}$

- p = passo da corrente;
- $Z_1 =$ número de dentes da engrenagem menor;
- $Z_2 =$ número de dentes da engrenagem maior.

Figura 3.27

Componentes de uma corrente.

3.5.2 Velocidade tangencial da corrente

Para o sistema representado na figura 3.28, podemos definir:

$$\operatorname{sen} \frac{\gamma}{2} = \frac{\frac{p}{2}}{\frac{D}{2}} = \frac{p}{D} \Longrightarrow D = \frac{p}{\operatorname{sen} \frac{\gamma}{2}}$$
 (I)

em que:

p = passo; $\gamma =$ ângulo de contato.

O valor do ângulo γ é de:

$$\gamma = \frac{360^{\circ}}{z}$$
, em que Z é o número de dentes da engrenagem.

Substituindo γ em (I), obtemos:

$$D = \frac{p}{\operatorname{sen}\left(\frac{180^{\circ}}{z}\right)}$$

Figura 3.28 Dimensões principais em transmissão por correntes.

A velocidade tangencial da corrente é dada por:

$$v = \frac{\pi Dn}{1000} = \frac{z \cdot p \cdot n}{1000}$$

em que:

V = velocidade tangencial
$$\left(\frac{m}{\min}\right)$$
;

z = número de dentes do pinhão; **p** = passo da corrente (mm); n = rotação (rpm).

Para que o funcionamento seja suave, é recomendável que o pinhão tenha no mínimo 17 dentes.

3.5.3 Seleção de correntes

A seleção de correntes é feita com critérios definidos por meio de tabelas, gráficos, catálogos ou manuais fornecidos pelos fabricantes.

As informações básicas para realizar essa seleção são:

a) potência a transmitir;

b) rotação em rpm dos eixos;

c) características do acionamento;

d) distância entre centros.

Cada fabricante define seu critério para o fator de serviço. A empresa Daido, por exemplo, define conforme mostra a tabela 3.4.

Exemplo

Selecionar uma corrente de rolo adequada para acionar um compressor, a partir de uma engrenagem acoplada a um motor elétrico, conforme mostra a figura 3.29.

Tabela 3.4

Fator de serviço para correias do fabricante Daido.

	Maraa	Motores combustíveis			
Característica do maquinário	elétrico ou turbina	Combustão interna Transmissão hidráulica	Combustão interna Transmissão mecânica		
Constante: transporte com carga constante, agitadores de líquidos, misturadores, bombas centrífugas e alimentadores.	١,0	١,0	١,2		
Meio impulsivo: transporte de carga irregular, máquinas operatrizes em geral, fornos automáticos, secadores, esmagadores, máquinas para fabricação de papel e trefiladores e compressores.	١,3	١,2	١,4		
Bastante impulsivo: equipamentos para elevação de peso, prensas, britadores, perfuratrizes, laminadores, equipamentos para obras civis, minas em geral, rotocultivadores e trituradores para material duro.	١,5	١,4	١,7		

Figura 3.29

Dados:

Nm = 7,5 kW (10 cv); nm = 875 rpm; i = 4; C = 650 mm.

Solução

Da tabela:

Motor elétrico $F_s = 1,3$ Compressor

Portanto, a potência corrigida é dada por:

vida aproximada

com manutenção e lubrificação correta.

de 15 mil horas,

 $5 \cdot 1,3 = 9,75 \, \text{kW}$

tando o gráfico de seleção, com a potência de 9,75 kW e a rotação de 875 rpm, obtém-se a corrente simples nº 50 com pinhão de 23 dentes.

 $\frac{\text{da tabela 3.4}}{\text{F}_{s}} = 1,3$

A corrente n° 50 tem o passo p = 15,875 mm.

O número de dentes da engrenagem (2) é de $z_2 = i \cdot z_1 \Rightarrow z_2 = 4 \cdot 23 = 92$ dentes.

O comprimento da corrente é dado pela fórmula:

$$L_{p} = 2C_{p} + \frac{z_{1} + z_{2}}{2} + \frac{(z_{2} - z_{1})^{2}}{4\pi^{2} \cdot C_{p}}$$

Substituindo os dados, obtemos:

$$L_{p} = 2 \cdot \frac{650}{15,875} + \frac{23 + 92}{2} + \frac{(92 - 23)^{2}}{4\pi^{2} \cdot 40,94}$$
$$L_{p} = 81,89 + 57,5 + 2,95 = 142,3$$

 \therefore L_p = 142 passos

3.6 Eixos

Eixos são elementos de máquinas em geral utilizados para transmitir torque e rotações. Há casos, entretanto, em que o eixo é fixo com solicitação apenas à flexão simples.

Neste material, consideramos somente os eixos de seção circular, de materiais dúcteis, solicitados à flexão e à flexo-torção com carregamento estático, sem análise das concentrações de tensões e fadiga.

3.6.1 Dimensionamento de eixos sujeitos à flexão

Eixos sujeitos à flexão normalmente são de médio teor de carbono (ABNT 1030 a 1050). Foi visto em resistência dos materiais que, na flexão simples, desprezando os efeitos da força cortante (Q), a tensão normal (σ) é dada pela expressão:

$$\sigma = \frac{M}{W}$$
, em que: $W = \frac{\pi d^3}{32}$

No dimensionamento do eixo, devemos admitir que:

$$\sigma \le \sigma_{adm} \Rightarrow \frac{M}{W} \le \sigma_{adm} = \frac{\sigma_{e}}{k_{s}} \Rightarrow$$

$$\Rightarrow \frac{M}{\frac{\pi d^{3}}{32}} \le \sigma_{adm} \Rightarrow \frac{\pi d^{3}}{32} \ge \frac{M}{\sigma_{adm}} \Rightarrow d \ge \sqrt[3]{\frac{32M}{\pi \cdot \sigma_{adm}}}$$

em que:

M = momento fletor na seção mais solicitada (N · mm); W = módulo de resistência à flexão da seção circular (mm³);d = diâmetro do eixo (mm); σ_{adm} = tensão admissível (MPa); σ_e = tensão de escoamento do material do eixo (MPa); k_s = coeficiente de segurança definido por normas ou determinado pela empresa com base na aplicação.

Por exemplo, na flexão: $5 \le ks \le 8$.

Exemplo

Determinar o diâmetro do eixo do conjunto da polia, conforme o carregamento proposto pela figura 3.30.

Dados: ℓ = 100 mm; P = 20 ; σ_{adm} = 60 MP_a

Solução

O momento fletor máximo é dado por:

$$M = \frac{P}{2} \cdot \frac{\ell}{4} = \frac{P \cdot \ell}{8} = \frac{20 \cdot 10^3 \cdot 100}{8} = \frac{2 \cdot 10^6}{8} \Longrightarrow M = 2,5 \cdot 10^5 \text{ N} \cdot \text{mm}$$

O diâmetro é obtido por:

$$d \ge \sqrt[3]{\frac{32 \cdot M}{\pi \cdot \sigma_{adm}}} = \sqrt[3]{\frac{32 \cdot 2, 5 \cdot 10^5}{\pi \cdot 60}} = 34,9 \Longrightarrow d \ge 34,9 \text{ mm}$$

3.6.2 Dimensionamento de eixos sujeitos à flexo-torção

Sabemos que, em uma transmissão direta, o esforço é apenas de torção, mas normalmente a transmissão se faz com polias, engrenagens ou outro elemento de máquina, em que a torção vem acompanhada da flexão.

Nesses casos de flexo-torção, a tensão normal à flexão, σ , e a tensão de cisalhamento à torção, τ, são dadas, respectivamente, por:

$$\sigma = \frac{M}{W} = \frac{M}{\frac{\pi d^3}{32}} \cong \frac{M}{0, 1d^3}$$
$$\tau = \frac{M_t}{W_t} = \frac{M_t}{\frac{\pi d^3}{16}} \cong \frac{M_t}{0, 2 \cdot d^3}$$

Como essas tensões máximas atuam na seção transversal da barra simultaneamente, usamos dois critérios de resistência para dimensionar o eixo, considerando o carregamento estático, sem concentrações de tensão e fadiga.

1)
$$\sqrt{\sigma^2 + 4\tau^2} \le \sigma_{adm}$$

2) $0,35\sigma + 0,65\sqrt{\sigma^2 + 4\tau^2} \le \sigma_{adm}$

De (1), obtemos:
$$d \ge \sqrt[6]{\frac{10^2(M^2 + M_t^2)}{\sigma_{adm}^2}}$$

De (2), obtemos: $d \ge \sqrt[3]{\frac{3,5M + 6,5\sqrt{M^2 + M_t^2}}{\sigma_{adm}}}$

em que:

 $M = momento \text{ fletor } (N \cdot mm)$ M_t = momento torçor (N · mm) σ_{adm} = tensão admissível (MPa)

 $\sigma_{adm} = \frac{\sigma_e}{k_s}$ é especificado por norma ou adotado com valor de $8 \le k_s \le 10$.

Exemplo

Determinar o diâmetro do eixo AB, sabendo que a força resultante (R) no eixo, em razão da transmissão por correias na polia movida, é de 2 kN, conforme indicado na figura 3.31.

Figura 3.31

Dados: $N_1 = 12,5 \text{ cv} = 9,2 \text{ kW}; n = 870 \text{ rpm}; i_{1,2} = 2; \eta_{\text{correias}} = 0,97;$ $\eta_{\text{mancais}} = 0,99; d_3 = 76,5 \text{ mm}; \sigma_{\text{adm}} = 50 \text{ MPa}.$ Solução $M_{t_3} = 9550 \cdot \frac{N_3}{n_3}$ $N_3 = N_1 \eta_{\text{correias}} \cdot \eta_{\text{par mancais}} = 9,2 \cdot 0,97 \cdot 0,99 = 8,83 \text{ kW}$ $n_3 = \frac{n_1}{i_{1,2}} = \frac{870}{2} = 435 \Rightarrow n_3 = 435 \text{ rpm}$ $M_{t_3} = 9550 \cdot \frac{8,83}{435} = 193,85 \text{ N} \cdot \text{m}$ $M_{t_3} = F_{t_3} \cdot \frac{d_3}{2} \Rightarrow F_{t_3} = \frac{2M_{t_3}}{d_3} = \frac{2 \cdot 193,85 \cdot 10^3}{76,5} = 5068 \text{ N}$ $tg \alpha = \frac{F_{t_3}}{F_{t_3}} \Rightarrow F_{t_3} = F_{t_3} \cdot tg 20^\circ = 5068 \cdot 0,364 \cong 1845 \text{ N}$

O diagrama para o plano horizontal é indicado na figura 3.32.

Figura 3.32 Diagrama para o plano horizontal.

1)
$$\sum H_{i} = 0 \Rightarrow -H_{A} - H_{B} + 1845 = 0 \Rightarrow H_{A} + H_{B} = 1845 H_{A}$$

2) $\sum M_{A} = 0 \Rightarrow -H_{B} \cdot 160 + 1845 \cdot 60 = 0 \Rightarrow H_{B} = \frac{1845 \cdot 160}{160}$
 $H_{B} = 692 N$
3) $\sum M_{B} = 0 \Rightarrow H_{A} \cdot 160 - 1845 \cdot 100 = 0 \Rightarrow H_{A} = \frac{1845 \cdot 160}{16}$
 $H_{A} = 1153 M$
Momento fletor (M_H):
 $M_{H_{1}} = 0$
 $M_{H_{2}} = 0$
 $M_{H_{3}} = -H_{A} \cdot 60 = -1153 \cdot 60 = 69180 Nmm \cong -6,92 \cdot M_{H_{4}} = 0$

O diagrama para o plano vertical é indicado na figura 3.33.

Ν

 $\frac{6 \cdot 60}{60} = 692$

 $\frac{5 \cdot 100}{60} = 1153$

104 Nm

Figura 3.33

Diagrama para o plano vertical.

1)
$$\sum V_1 = 0 \Rightarrow -V_A - V_B - 2000 + 5068 = 0 \Rightarrow V_A + V_B = 3068 \text{ N}$$

2) $\sum M_A = 0 \Rightarrow -V_B \cdot 160 + 5068 \cdot 60 - 2000 \cdot 50 = 0 \Rightarrow$
 $\Rightarrow -V_B \cdot 160 + 304080 - 100000 = 0 \Rightarrow V_B = 2526 \text{ N}$
3) $\sum M_B = 0 \Rightarrow V_A \cdot 160 + 2000 \cdot 210 - 5068 \cdot 100 = 0 \Rightarrow V_A = 542 \text{ N}$

Momento fletor (M_v) :

A seção (3) é a mais solicitada, e temos:

 $M_{V_{4}} = 0$ $M_{V_2} = -2000 \cdot 50 = -100000 = 10^5 \text{ N} \cdot \text{mm}$ $M_{v_a} = -2526 \cdot 100 = -2,526 \cdot 10^5 \text{ N} \cdot \text{mm}$ $M_{V_4} = 0$

A seção 3 (no diagrama) é a mais solicitada. Temos:

$$M_{\rm H}=6,92\cdot10^4\,\rm N\cdot mm$$

$$M_v = 2,526 \cdot 10^5 N \cdot mm$$

O momento fletor resultante é obtido por:

$$M_{R}^{2} = M_{H}^{2} + M_{V}^{2} = (6,92 \cdot 10^{4})^{2} + (2,526 \cdot 10^{5})^{2} \Rightarrow$$
$$M_{R} = 261907 \text{ N} \cdot \text{mm}$$

O momento torçor em (3) é dado por:

$$M_{t_3} = F_{t_3} \cdot \frac{d_3}{2} = 5068 \cdot \frac{76,5}{2} = 193850 \text{ N} \cdot \text{mm}$$

Substituindo nas fórmulas do diâmetro, obtemos:

1)
$$d \ge \sqrt[6]{\frac{10^2 \left[\left(261907\right)^2 + \left(193850\right)^2 \right]}{50^2}} \Rightarrow d \ge 40,2 \text{ mm}$$

2) $d \ge \sqrt[3]{\frac{3,5 \cdot 261907 + 6,5 \sqrt{\left(261907\right)^2 + 193850}}{50}} \Rightarrow d \ge 39,3 \text{ mm}$

3.7 Engrenagens

As engrenagens são elementos de transmissão de movimento rotativo e torque, entre eixos paralelos, concorrentes ou reversos sem deslizamento, em geral com alto rendimento. É uma transmissão do tipo rígido e tem a desvantagem de apresentar maior ruído e custo mais elevado comparado aos demais tipos de transmissão.

A figura 3.34 mostra diversos tipos construtivos de engrenagens e engrenamentos.

As engrenagens cilíndricas admitem, para um estágio, uma relação de transmissão $i \le 8$, com rendimento $0,96 < \eta < 0,98$.

Na transmissão com parafuso sem-fim, o rendimento varia no intervalo $0,45 \le \eta \le 0,97$, em função da relação de transmissão (i).

3.7.1 Engrenagens cilíndricas de dentes retos (ECDR)

Definições e características geométricas

Podemos observar, na figura 3.35, as dimensões principais para uma engrenagem cilíndrica de dentes retos.

Figura 3.34

Tipos de engrenagens e engrenamentos: a) engrenagem cilíndrica de dentes retos; b) engrenagem cilíndrica de dentes helicoidais; c) cônica de dentes retos com eixos concorrentes; d) cônica de dentes helicoidais; e) helicoidal com eixos reversos; f) parafuso (ou rosca) sem-fim.

Figura 3.35

Dimensões principais para uma engrenagem cilíndrica de dentes retos.

 $d_e = diâmetro externo;$ $d_i = diâmetro interno;$ $d_p = diâmetro primitivo;$ p = passo;V = vão do dente; **e** = espessura do dente; $h_k =$ altura da cabeça; $h_f = altura do pé;$ z = número de dentes.

Da circunferência primitiva, podemos obter:

$$\pi d_p = p \cdot z \Rightarrow dp = \frac{p}{\pi} \cdot z \Rightarrow d_p = m \cdot z$$

A fórmula $m = \frac{p}{\pi}$ é definida como o módulo da ECDR.

Construtivamente, $h_k = m$. Temos, então:

$$\boldsymbol{d}_{_{\boldsymbol{e}}}=\boldsymbol{d}_{_{\boldsymbol{p}}}+2\cdot\boldsymbol{h}_{_{\boldsymbol{k}}}=\boldsymbol{m}\cdot\boldsymbol{z}+2\boldsymbol{m}=\boldsymbol{m}\left(\boldsymbol{z}+2\right)$$

Portanto, $d_e = m(z + 2)$.

O valor do diâmetro interno é dado por: $di = dp - 2h_f$. Mas, construtivamente, temos: $h_f = (1, 2 a 1, 3) m$. Substituindo, obtemos:

$$d_i = m \cdot z - 2 \cdot 1, 2m = m(z - 2, 4)$$

Portanto, $d_i = m(z - 2, 4)$.

A tabela 3.5 mostra valores dos módulos normalizados.

Módulos normalizados	Variaçã
0,25; 0,50; 0,75;; 3,75; 4,00	0,25
4,00; 4,50; 5,00;; 7,00	0,50
7,00; 8,00; 9,00; 10,00;; 16,00	1,00

Forças no engrenamento

Em uma transmissão que utiliza ECDR cujo perfil do dente é denominado evolvente, o carregamento tem o nome de força normal (F_n) , e sua direção forma com a tangente às circunferências primitivas o ângulo de pressão de 20°. Esse carregamento pode ser decomposto em duas direções:

- força tangencial (F_t), responsável pela transmissão de torque e movimento;
- força radial (F_r), que atua diretamente no eixo provocando flexão.

A figura 3.36 mostra, para um par engrenado, a força normal e suas componentes.

Tabela 3.5

Figura 3.36

Par de engrenagens e disposição dos carregamentos.

Na figura:

 $\begin{aligned} \alpha &= \mbox{angulo de pressão } (= 20^{\circ}); \\ F_t &= \mbox{força tangencial}; \\ F_r &= \mbox{força radial}; \\ N &= \mbox{potência (cv ou kW);} \\ n &= \mbox{rotações por minuto (rpm);} \\ a &= \mbox{distância entre centros de engrenagens;} \\ b &= \mbox{largura das engrenagens.} \\ Do engrenamento, temos: tg &\alpha &= \frac{F_r}{F_t} \Rightarrow F_r = F_t \cdot tg \alpha. \\ \text{Sabemos que } M_t = F_t \cdot \frac{d}{2} \Rightarrow F_t = \frac{2 \cdot M_t}{d}. \end{aligned}$

O momento torçor (M_t), no Sistema Internacional (SI), é dado pela equação:

 $M_t = 9550 \frac{N}{n}$, em que a potência (N) é dada em kW, a rotação (n) em rpm e o torque (M_t), em N · m.

No sistema técnico ou gravitacional o torque é dado pela expressão:

 $M_t = 716, 2 \frac{N}{n}$, em que a potência é dada em cv (cavalo-vapor), a rotação em rpm e o torque em kgf·m.

Exemplo

Para a ECDR da figura 3.37, determinar as dimensões geométricas, bem como as forças atuantes no engrenamento.

Figura 3.37 Exemplo de forças atuantes

no engrenamento.

(196)

Dados:

$$\begin{split} &\mathsf{N}_1 = 12,5 \; \mathrm{cv} = 9,2 \; \mathrm{kW}; \\ &\mathsf{n}_1 = 870 \; \mathrm{rpm}; \\ &\mathsf{z}_1 = 13 \; \mathrm{dentes}; \\ &\mathsf{m}_1 = 4 \; \mathrm{mm}; \\ &\mathsf{i}_{1,2} = 2,4. \end{split}$$
 $\begin{aligned} &\mathsf{Solução} \\ &\mathsf{Engrenagem} \; (1): \\ &\mathsf{d}_{p_1} = \mathsf{m}_1 \cdot \mathsf{z}_1 = 4 \cdot 13 = 52 \Rightarrow \mathsf{d}_{p_1} = 52 \; \mathsf{mm} \\ &\mathsf{d}_{e_1} = \mathsf{m}_1 \; (\mathsf{z}_1 + 2) = 4 \; (13 + 2) = 60 \Rightarrow \mathsf{d}_{e_1} = 60 \; \mathsf{mm} \\ &\mathsf{d}_{i_1} = \mathsf{m}_1 \left(\mathsf{z}_1 - 2, 4\right) = 4 \; (13 - 2, 4) = 42, 4 \Rightarrow \mathsf{d}_{i_1} = 42, 4 \; \mathsf{mm} \end{split}$

Engrenagem (2):

Como,
$$\mathbf{i}_{1,2} = \frac{\mathbf{d}_2}{\mathbf{d}_1} = \frac{\mathbf{m} \cdot \mathbf{z}_2}{\mathbf{m} \cdot \mathbf{z}_1} = \frac{\mathbf{z}_2}{\mathbf{z}_1} \Longrightarrow \mathbf{z}_2 = \mathbf{z}_1 \cdot \mathbf{i}_{1,2} = \mathbf{13} \cdot \mathbf{2}, \mathbf{4}$$
,
portanto, $\mathbf{z}_2 = \mathbf{31}$ dentes.

Para que haja o engrenamento: $m_1 = m_2 = 4$ mm.

Portanto, substituindo na equação, obtemos:

$$d_{p_2} = m_2 \cdot z_2 = 4 \cdot 31 = 124 \Rightarrow d_{p_2} = 124 \text{ mm}$$

$$d_{e_2} = m_2 (z_2 + 2) = 4 (31 + 2) = 132 \Rightarrow d_{e_2} = 132 \text{ mm}$$

$$d_{i_2} = m_2 (z_2 - 2, 4) = 4 (31 - 2, 4) = 114, 4 \Rightarrow d_{i_2} = 114, 4 \text{ m}$$

A distância entre centros (a), é dada por:

$$a = \frac{d_{p_1} + d_{p_2}}{2} = \frac{m(z_1 + z_2)}{2} = \frac{4(13 + 31)}{2} = 88$$

Portanto, a = 88 mm.

$$\begin{split} M_t &= 9550 \ \frac{N}{n} = 9550 \cdot \frac{9,2}{870} \cong 101 \, \text{N} \cdot \text{m} \\ F_{t_1} &= \frac{2M_{t_1}}{d_1} = \frac{2 \cdot 101 \cdot 10^3}{52} \cong 3885 \Longrightarrow F_{t_1} = 3885 \, \text{N} \end{split}$$

mm

$$F_{r_1} = F_{t_1} \cdot tg20^\circ = 3885 \cdot 0,364 = 1414 \Longrightarrow F_{r_1} = 1414 N$$

Portanto,
$$F_{t_1} = F_{t_2} = 3885 N e F_{r_1} = F_{r_2} = 1414 N.$$

Dimensionamento de ECDR

Existem dois critérios para dimensionar engrenagens cilíndricas de dentes retos:

- critério de resistência;
- critério de pressão (*pitting*).

Critério de resistência

Considera-se apenas a força tangencial (F_t) agindo no dente do pinhão (engrenagem menor), o que provoca flexão e origina na raiz uma tensão dada pela fórmula:

$$\sigma = \frac{F_t \cdot q}{b \cdot m \cdot e} \quad (1)$$

em que:

$$\sigma = tensão normal\left(\frac{N}{mm^2}\right);$$

/

 F_t = força tangencial (N);

b = largura do pinhão (mm);

q = fator de forma (valor que depende da natureza geométrica);

 $m = m \circ dulo (mm);$

e = fator de carga, sendo:

- **e** = 0,8 para trabalho contínuo (12 a 24 horas/dia);
- **e** = 1 para trabalho normal;
- **e** = 1,5 para pouco uso.

Figura 3.38 Carregamentos e dimensões.

Os valores correspondentes ao fator de forma (q) para ângulo de pressão $\alpha = 20^{\circ}$ sem correção são apresentados na tabela 3.6.

Nº de dentes (Z	12	13	14	15	16	17	18	21	24	28	34	40	50	65	80	100	α
Fator (q)	4,5	4,3	4,1	3,9	3,75	3,6	3,5	3,3	3,2	3,1	3,0	2,9	2,8	2,7	2,6	2,6	2,45

Como
$$\sigma \leq \sigma_{adm}$$
 e sabendo que $d_p = mz$ e $M_t = F_t \cdot \frac{d}{2}$, sub

temos o módulo M dado por:

$$\mathbf{m} = \sqrt[3]{\frac{2 \cdot \mathbf{M}_{t} \cdot \mathbf{q}}{\lambda \cdot z \cdot \mathbf{e} \cdot \sigma_{adm}}}, \text{ em que } \lambda \text{ é a relação entre } \mathbf{b} \text{ e } \mathbf{m}.$$

Adotaremos
$$\lambda = 10$$
 ou $\frac{b}{m} = 10$.

A tensão admissível será dada conforme a tabela 3.7.

Mat	erial	Tensão admissível de flexão o _{adm} MPa (N/mm²)
Bronze fosforoso		60 – 70
Ferro fundido cinzen	to	35 – 45
Ferro fundido nodular		55 – 70
Aço fundido		70 – 90
Aços-carbono	1010 - 1020	70 – 90
ABNT	1045 – 1050	85 – 120
cromo-níquel		140 – 200
Aços ligados cromo-molibdênio		150 – 200
Materiais sintéticos (resinas)	30 – 40

Critério de pressão (pitting)

Esse critério verifica a pressão decorrente do contato entre os flancos dos dentes de duas engrenagens e sua vida em horas de funcionamento.

Tabela 3.6

ibstituindo em (1),

Valores do fator de forma para engrenamento externo.

Tabela 3.7

Tensão admissível* Fonte: Stipkovic Marco.

-Pitting, ou

"pipocamento", é o aparecimento de pequenas fissuras logo abaixo da superfície do dente que se propagam em geral para a direção da raiz do dente, podendo levá-lo à ruptura.

O critério de pressão deve ser utilizado apenas para verificação do pinhão (engrenagem menor). Se o pinhão suportar uma quantidade razoável de horas de funcionamento, com a coroa, certamente, ocorrerá o mesmo.

Partindo da equação de Hertz, obtemos a seguinte expressão:

$$bd_{p}^{2} = 2f^{2} \frac{M_{tp}}{p_{adm}^{2}} \cdot \frac{i \pm 1}{i} (mm^{3})$$

em que:

i = relação de transmissão;

 $d_n = di$ âmetro primitivo do pinhão (**mm**);

 M_{tp} = momento torçor no eixo do pinhão (N · mm);

b = largura do pinhão;

 $p_{adm} = pressão admissível no contato dos materiais (N/mm²);$

+ = engrenamento externo;

– = engrenamento interno;

f = fator de característica elástica do par, obtido pela tabela 3.8 para ângulo de pressão igual a 20°.

Tab	ela	3.8

Fator de característica (**f**) para ângulo de pressão igual a 20°.

Material	E (GPa)	F
Pinhão de aço Engrenagem de aço	$E_1 = 210$ $E_2 = 210$	478
Pinhão de aço Engrenagem de FoFo	$E_1 = 210$ $E_2 = 105$	390
Pinhão de ferro fundido (FoFo) Engrenagem de aço	$E_1 = 105$ $E_2 = 105$	338

A pressão admissível (p_{adm}) depende da dureza e da duração em milhões de rotações:

$$p_{adm} = \frac{0,487 \cdot HB}{W^{\frac{1}{6}}} \left(\frac{N}{mm^2}\right)$$

em que:

HB é a dureza Brinell
$$\left(\frac{N}{mm^2}\right)$$
;

W é o fator de números de ciclos (adimensional): W = $\frac{60 \cdot n \cdot h}{10^6}$,

sendo:

n = rotação do pinhão em rpm; h = duração ou vida em horas de funcionamento.

Exemplo

Para o conjunto da figura 3.39, determinar o módulo da engrenagem (3) pelo critério de resistência e efetuar a verificação utilizando o critério de pressão.

Dados:

$$N_m = 25 \text{ cv} = 18,4 \text{ kW};$$

 $n_m = 1.165 \text{ rpm};$
 $\eta_{\text{correias}} = 0,96;$
 $\eta_{\text{par de mancais}} = 0,99;$
 $i_{1,2} = 2; i_{3,4} = 2,5;$
 $z_3 = 17 \text{ dentes};$
vida de 10.000 horas;

aço ABNT 8640 com dureza no flanco do dente de $H_B = 5200 \frac{N}{mm^2}$

Solução

Inicialmente, determinamos a potência e a rotação na engrenagem (3):

Figura 3.39

Exemplo para aplicação dos critérios de resistência e de pressão.

$$N_{3} = \eta_{\text{correias}} \cdot \eta_{\text{par de mancais}} \cdot Nm = 0,96 \cdot 0,99 \cdot 18,4 \Longrightarrow N_{3} = 17,49 \text{ kW}$$

$$n_3 = \frac{n_m}{i_{12}} = \frac{1165}{2} = 582, 5 \implies n_3 = 582, 5 \text{ rpm}$$

$$M_{t_3} = 9550 \frac{N_3}{n_3} = 9550 \cdot \frac{17,49}{582,5} \Longrightarrow M_{t_3} = 286,75 \text{ N} \cdot \text{m}$$
$$m_3 = \sqrt[3]{\frac{2 \cdot M_{t_3} \cdot \text{q}}{\lambda \cdot z_3 \cdot \text{e} \cdot \sigma_{\text{adm}}}}$$

Admitimos:

$$z_3 = 17$$
 dentes $\Rightarrow q = 3,6$

$$t = 8$$
 horas $\Rightarrow e = 7$

ABNT 8640
$$\Rightarrow$$
 200 MPa

 $\lambda = 10$ (adotado)

Substituindo na equação, teremos:

$$m_3 = \sqrt[3]{\frac{2 \cdot 286750 \cdot 3,6}{10 \cdot 17 \cdot 1 \cdot 200}} \cong 3,9 \Longrightarrow m_3 = 4 \text{ mm}$$

Verificando pelo critério de pressão:

$$b \cdot d_{\mathsf{p}}^2 = 2f^2 \cdot \frac{M_{\mathsf{tp}}}{p_{\mathsf{adm}}^2} \cdot \frac{i+1}{i}$$

Como sabemos:

$$d_{p_3} = m_3 \cdot z_3 = 4 \cdot 17 = 68 \Rightarrow d_{p_3} = 68 \text{ mm}$$
$$\lambda = \frac{b}{m} = 10 \Rightarrow b = 10 \cdot m = 10 \cdot 4 \Rightarrow b = 40 \text{ mm}$$
$$i_{3,4} = 2,5$$

Cálculo da pressão admissível:

$$p_{adm}^{2} = \frac{2f^{2} \cdot M_{t_{3}}}{b \cdot d_{3}^{2}} \cdot \frac{i+1}{i} = \frac{2 \cdot 478^{2} \cdot 286750(2,5+1)}{40 \cdot 68^{2} \cdot 2,5}$$

$$p_{adm} = 996 \frac{N}{mm^{2}}$$

$$p_{adm} = \frac{0,487 \cdot HB}{W^{\frac{1}{6}}} \Longrightarrow W^{\frac{1}{6}} = \frac{0,487 \cdot HB}{p_{adm}}$$

$$W = \left(\frac{0,478 \cdot HB}{p_{adm}}\right)^{6} = \left(\frac{0,478 \cdot 5200}{996}\right)^{6} = 270$$

$$W = \frac{60 \cdot n \cdot h}{10^{6}} \Longrightarrow h = \frac{10^{6} \cdot W}{60 \cdot n} = \frac{10^{6} \cdot 270}{60 \cdot 582,5} \Longrightarrow h = 7725h$$

Como a proposta é para 10 000 horas, temos de recalcular aumentando, por exemplo, o módulo de 4 mm para 5 mm:

$$d_{p_3} = 5 \cdot 17 = 85 \Rightarrow d_{p_3} = 85 \text{ mm}$$
$$b = 10 \cdot 5 \Rightarrow b = 50 \text{ mm}$$

$$p_{adm}^{2} = \frac{2 \cdot 478^{2} \cdot 286 \cdot 750 (2,5+1)}{50 \cdot 85^{2} \cdot 2,5} = 713 \frac{N}{mm^{2}}$$
$$W = \left(\frac{0,478 \cdot 5200}{713}\right)^{6} = 2008$$
$$h = \frac{10^{6} \cdot 2008}{60 \cdot 582,5} = 57453$$

h = 57453 horas, portanto, atende a vida proposta, que é de 10000 horas.

Esse projeto poderia ser otimizado com a diminuição da largura da engrenagem ou a utilização de um módulo de 4,5 mm.

3.7.2 Engrenagens cilíndricas de dentes helicoidais (ECDH)

Nas engrenagens cilíndricas de dentes helicoidais, como os dentes são inclinados, o contato entre eles se dá progressivamente, o que torna o engrenamento helicoidal mais suave e com maior **grau de recobrimento**.

horas

Grau de

recobrimento é o número que determina quantos pares de dentes se encontram engrenados simultaneamente.

Características geométricas de uma ECDH

As características geométricas de uma ECDH são indicadas na figura 3.40 e na tabela 3.9.

Figura 3.40 Algumas características geométricas.

Tabela 3.9Características geométricasde ECDH.

Descrição	Símbolo	Fórmula
Número de dentes	z	$\frac{d_p}{m_f}$
Módulo frontal	m _f	$\frac{p_{f}}{\pi} = \frac{m_{n}}{\cos\beta}$
Módulo normal	m _n	$\frac{p_n}{\pi}$
Passo frontal	Pf	$m_f \cdot \pi$
Passo normal	Pn	$m_n \cdot \pi$
Passo axial	Pa	$\frac{p_f}{tg\beta}$
Diâmetro primitivo	d _p	$m_f \cdot z$
Ângulo da hélice	β	$\sec\beta = \frac{d_p}{m_n \cdot z}$
Distância entre centros	a	$\frac{Z_1 + Z_2}{2} \cdot m_f$
Altura da cabeça do dente	h _k	m _n

Descrição	Símbolo	Fórm
Altura do pé do dente	h _f	1, 2m _n
Diâmetro externo	d _k	$d_p + 2 \cdot h_k =$
Diâmetro do pé do dente	d _f	$d_{\rm p}-2h_{\rm f}$
Número de dentes virtual	z _n	$\frac{z}{\cos^3\beta}$
Ângulo de pressão normal	α _n	20 °
Ângulo de pressão frontal	α _f	$tg\alpha_{f} = \frac{tg\alpha_{n}}{\cos \beta}$

Esforços no engrenamento de uma ECDH

Forças atuando sobre o dente de uma engrenagem helicoidal são essencialmente tridimensionais, de modo que sua resultante pode ser decomposta em três direções. Para uma engrenagem com hélice à direita, essas reações são indicadas na figura 3.41.

As forças são, respectivamente:

$$F_{t} = \frac{2M_{t}}{d_{p}}, \ F_{r} = F_{t} \cdot tg\alpha_{f}, \ F_{a} = F_{t} \cdot tg\beta \ e \ F = \frac{F_{t}}{\cos\alpha_{n} \cdot \cos\beta}$$

Figura 3.41

Reações para uma engrenagem helicoidal à direita.

Dimensionamento de ECDH

O dimensionamento das ECDH é análogo ao das ECDR, corrigindo-se apenas um fator que considera o ângulo de hélice (β).

Critério de pressão

$$b \cdot d_p^2 = 2f^2 \cdot \frac{M_{tp}}{p_{adm}^2 \cdot \phi_p} \cdot \frac{i+1}{i}$$

Tabela 3.10

Valores para o fator de correção devido à hélice.

 φ_{p} = fator de correção de hélice, tabela 3.10

ϕ_{P}	I.	1,11	1,22	1,31	1,40	1,47	1,54	1,60	۱,66	1,71
β	0	5°	10°	15°	20°	25°	30°	35°	40°	45°

Critério de resistência

$$\sigma_{max} = \frac{F_t \cdot q}{b \cdot m_n \cdot e \cdot \phi_r}$$

 ϕ_r = fator de correção de hélice

Tabela 3.11

 $m_n = m \delta du lo normal$

Fator de correção de hélice para o critério de resistência.

Para determinar o valor de φ_r em função de β , usa-se a tabela 3.11.

ϕ_r	1,00	1,20	1,28	1,33	1,35	1,36	1,36	1,36	1,36	1,36
β	0	5°	10°	15°	20°	25°	30°	35°	40°	45°

Para determinar o fator de forma (q), devemos calcular o número virtual de dentes (Z_n) :

$$z_n = \frac{z}{\cos^3 \beta}$$
.

3.7.3 Outros tipos de engrenagens

Existem outros tipos de engrenagens que não são abordadas neste material. Caso seja necessário, sugerimos como material de apoio o livro de engrenagens de Stipkovic M.

3.8 Mancais de rolamento e deslizamento

Mancais são elementos de máquinas que servem de suporte, rotativo ou fixo, para os eixos das máquinas.

Os mancais podem ser classificados em dois grupos:

a) mancais de rolamento; b) mancais de deslizamento.

A figura 3.42 mostra um eixo de uma serra circular que recebe cargas da polia plana (C) e da serra circular (D) e as transmite até os mancais (A) e (B), que por sua vez descarregam as cargas sobre a estrutura ou corpo que está fixo em uma base.

3.8.1 Mancais de rolamento

Para o mancal de rolamento a carga é transferida por meio de elementos rolantes (esferas, rolos etc.), com atrito desprezível comparado ao de um mancal de deslizamento.

A característica comum dos mancais de rolamento é um número determinado de elementos (esferas ou rolos). As esferas ou rolos são postos entre dois anéis, um fixo e outro rotativo, conforme exemplo da figura 3.43.

Os mancais de rolamento podem ser divididos conforme a direção das forças que suportam. Citamos dois tipos:

a) mancais radiais, em que a direção da força é de preferência radial, como nas engrenagens de dentes paralelos, polias, rodas etc.;

Figura 3.42 Eixo de uma serra circular.

Figura 3.43 Exemplo de mancal de rolamento.

b) mancais axiais, em que a direção da força que predomina é axial, como nas engrenagens de dentes helicoidais, coroa e eixo sem-fim, turbinas, ventiladores axiais etc. Para cada tipo de engrenamento temos um tipo de elemento rolante, conforme mostra a figura 3.44.

Figura 3.44 Tipos de elementos rolantes.

O Esfera	Rolamentos rígidos de esfera Rolamentos de esferas de contato angular Rolamentos autocompensadores de esferas Rolamentos axiais de esferas
Rolos	Rolamentos de rolos cilíndricos Rolamentos de rolos cônicos Rolamentos autocompensadores de rolos Rolamentos axiais de rolos
Agulhas	Rolamentos de agulhas

Inúmeros são os tipos e dimensões de rolamentos e suas aplicações, o que torna inviável descrições individualizadas. Para a seleção do rolamento adequado, recomendamos a consulta de catálogos de fabricantes que apresentam grande nível de detalhamento.

Descrição de alguns tipos de rolamentos

A seguir são descritos alguns tipos de rolamentos que possuem maior aplicação.

a) Rolamentos rígidos de uma carreira de esferas.

Os rolamentos rígidos de uma carreira de esferas são de construção simples, não separáveis e capazes de funcionar em altas rotações.

Esse tipo de rolamento suporta cargas radiais e, em algumas situações, carga axial, em ambos os sentidos, e requer pouca manutenção. Em razão dessas características, aliadas a preços menores, é o mais utilizado de todos os tipos de rolamentos.

A figura 3.45 mostra em vista espacial um rolamento rígido de uma carreira de esferas e a denominação de cada item.

b) Rolamentos de uma carreira de esferas de contato angular.

São rolamentos normalmente montados em pares, um contra o outro, para suportar cargas em ambos os sentidos. Não são desmontáveis e têm a capacidade de operar com elevadas cargas axiais e com rotações relativamente altas.

A figura 3.46 mostra em vista espacial um rolamento de uma carreira de esferas de contato angular e a denominação de cada item.

c) Rolamentos de uma carreira de rolos cilíndricos.

São rolamentos desmontáveis. Suportam elevada carga radial e praticamente nenhuma carga axial. Podem se deslocar axialmente sobre as pistas, compensando assim as dilatações longitudinais sofridas pelo eixo. Por esse motivo são utilizados como rolamentos livres.

Figura 3.45 Rolamento rígido de uma

carreira de esferas.

Figura 3.46

Rolamento de uma carreira de esferas de contato angular.

A figura 3.47 mostra em vista espacial um rolamento de uma carreira de rolos cilíndricos e a denominação de cada item.

Figura 3.47 Rolamento de uma carreira de rolos cilíndricos.

d) Rolamentos de uma carreira de rolos cônicos.

São rolamentos adequados para suportar cargas radiais e axiais em um único sentido e são geralmente do tipo separável. Devem ser montados sempre em pares, a fim de suportar cargas nos dois sentidos.

A figura 3.48 mostra em vista espacial um rolamento de uma carreira de rolos cônicos e a denominação de cada item.

e) Rolamentos autocompensadores de rolos.

São rolamentos que suportam elevadas cargas radiais e cargas axiais e atuam em ambos os sentidos. São insensíveis a erros de alinhamento do eixo em relação à caixa e a flexões do eixo.

f) Rolamentos axiais de esferas de escora simples.

e a denominação de cada item.

São rolamentos separáveis e de montagem simples, que suportam cargas puramente axiais em um único sentido. Neste caso, necessitam, no mesmo eixo, de mais dois rolamentos radiais para suportarem as cargas nessa direção.

A figura 3.50 mostra em vista espacial um rolamento axial de esferas de escora simples e a denominação de cada item.

g) Rolamentos de agulhas.

São rolamentos com rolos cilíndricos finos e compridos e possuem elevada capacidade de carga. São adequados para arranjos de rolamentos em que o espaço radial disponível é limitado.

A figura 3.51 mostra em vista espacial um rolamento de agulhas e a denominação de cada item.

A figura 3.49 mostra em vista espacial um rolamento autocompensador de rolos

Figura 3.49

Rolamento autocompensador de rolos.

Anel externo Anel interno Figura 3.50 Rolamento axial de esferas

de escora simples.

Figura 3.51 Rolamento de agulhas.

Escolha de rolamentos

É difícil estabelecer regras gerais para a escolha do rolamento adequado para cada caso.

De modo geral, podemos dizer que os rolamentos devem ser:

a) de esfera para pequenas cargas e rotações altas;

b) de rolos para grandes cargas radiais;

c) autocompensadores se ocorrer desalinhamento dos eixos;

d) de rolo cilíndrico se houver deslocamento axial completamente livre;

e) de esferas de contato angular para cargas axiais relativamente intensas e altas velocidades;

f) de rolos cônicos para grandes combinações de carga axial e radial.

Seleção do tamanho do rolamento utilizando a fórmula da vida

A vida de um rolamento é definida em função do número de rotações ou de horas de funcionamento até o aparecimento de uma avaria, que pode ser decorrente do primeiro sinal de fadiga em qualquer um de seus elementos.

A vida nominal de um rolamento é o número de rotações alcançado ou ultrapassado por 90% de uma amostra superior a 30 rolamentos idênticos sob determinada capacidade de carga dinâmica até o aparecimento de certas fissuras provenientes da fadiga.

Para determinado rolamento, o experimento é realizado com diferentes cargas radiais (F), conforme indicado na figura 3.52.

F ₁	L_1	\rightarrow	milhões de rotações
F_2	L_2	\rightarrow	milhões de rotações
•			
•			
F _n	L _n	\rightarrow	milhões de rotações

Da experiência, concluiu-se que há uma relação entre a força (F) e a vida (L) em milhões de rotações:

$$F_1 \sqrt[p]{L_1} = F_2 \sqrt[p]{L_2} = \dots = F_n \sqrt[p]{L_n} = \text{ constante}$$

Dessa forma, constatou-se que há uma carga (F) que, aplicada ao rolamento, resulta em uma vida nominal de 1 milhão de rotações:

 $F\sqrt[p]{1} = F = C$

O significado físico da constante C, portanto, é a força radial que, aplicada a rolamentos idênticos, permite uma vida nominal de 1 milhão de rotações, com 90% de probabilidade de não apresentar falha. Essa constante é denominada capacidade dinâmica do rolamento. Temos, então:

$$\mathsf{F}\sqrt[p]{\mathsf{L}} = \mathsf{C} \Longrightarrow \mathsf{L} = \left(\frac{\mathsf{C}}{\mathsf{F}}\right)^{\mathsf{I}}$$

em que:

p = expoente devido ao tipo de rolamento, sendo:

$$p = \frac{10}{3}$$
, para rolamentos de rolos.

Nos casos em que a força possui somente direção radial ou axial, temos:

P = F

Figura 3.52 Indicação de carregamento.

Em casos em que há ação simultânea de cargas axiais e radiais, cuja carga resultante é constante em intensidade, direção e sentido, a carga equivalente sobre o rolamento pode ser obtida com base na equação geral:

$$\mathsf{P} = \mathsf{x} \cdot \mathsf{F}_{\mathsf{r}} + \mathsf{y} \cdot \mathsf{F}$$

em que:

P = carga dinâmica equivalente (N); F_r = carga radial (N); $F_a = \text{carga axial (N)};$ $\mathbf{x} =$ fator de carga radial; y = fator de carga axial.

Caso a rotação do rolamento seja constante, a vida nominal pode ser expressa em horas (L_h) :

$$L_{h} = \frac{10^{6}}{60 \cdot n} \cdot L = \frac{10^{6}}{60 \cdot n} \left(\frac{C}{P}\right)^{p}$$

em que:

n = frequência em rpm; L_{h} = vida nominal em horas de trabalho.

Segundo a empresa FAG:

$$L_{h} = \frac{10^{6} \cdot L}{60 \cdot n} = \frac{500 \cdot 33 \cdot \frac{1}{3} \cdot 60}{60 \cdot n} \left(\frac{C}{P}\right)^{p} \Rightarrow$$
$$\Rightarrow \frac{L_{h}}{500} = \frac{33 \cdot \frac{1}{3}}{n} \left(\frac{C}{P}\right)^{p} \Rightarrow \underbrace{\sqrt{\frac{L_{h}}{500}}}_{f_{L}} = \underbrace{\sqrt{\frac{33 \cdot \frac{1}{3}}{n}} \cdot \frac{C}{P}}_{f_{h}}$$

Portanto,
$$\mathbf{f}_{L} = \mathbf{f}_{n} \cdot \frac{\mathbf{C}}{\mathbf{P}}$$
 (segundo FAG).

em que:

 $\mathbf{f}_{I} = \text{fator dinâmico;}$ $\mathbf{f}_n =$ fator de rotação.

Segundo a empresa SKF, a vida nominal em horas (L_h) é dada pela fórmula:

$$L_{h} = \frac{10^{6}}{60 \cdot n} \cdot \left(\frac{C}{P}\right)^{p}$$

em que:

 L_{h} = vida nominal em horas de trabalho; n = rotações em rpm; C = capacidade de carga dinâmica (N ou kN);P = carga equivalente (N);p = constante em função do rolamento.

Nas aplicações convencionais, a vida nominal ajustada (ampliada) é calculada pela expressão:

$$\mathbf{L}_{ha} = \mathbf{a}_1 \cdot \mathbf{a}_2 \cdot \mathbf{a}_3 \cdot \mathbf{L}_h \quad (horas)$$

em que:

 $L_{ha} = vida nominal ampliada em horas;$ \mathbf{a}_1 = fator para a probabilidade de falha; $a_2 =$ fator para matéria-prima; a_3 = fator para condições de serviço (devido à lubrificação e às temperaturas de funcionamento).

Para a confiabilidade geralmente aceita de 90% e para materiais aos quais corresponde o valor de C e condições de funcionamento normais, temos:

$$a_1 = a_2 = a_3 = 1$$
,

com o que as duas fórmulas de vida ficam idênticas: $L_{ha} = L_{h}$

Exemplo

No rolamento de uma carreira de esferas (6308) da figura 3.53 atua uma carga radial de 3000 N e uma carga axial de 1800 N a uma rotação de 870 rpm. Determinar a vida nominal em horas.

Figura 3.53

Exemplo para cálculo da vida nominal de um rolamento.

Dados:
$$F_r = 3000 \text{ N}$$
; $F_a = 1800 \text{ N}$; $n = 870 \text{ rpm}$.

Rolamento 6308:

C = 41000 N;

C0 = 24000 N.

Solução

As fórmulas, tabelas e dados foram obtidos do catálogo da empresa SKF (©SKF 2001).

A carga dinâmica equivalente para rolamentos individuais é dada por:

$$P = xF_r \rightarrow quando \ \frac{F_a}{F_r} \le e$$
$$P = xF_r + yF_a \rightarrow quando \ \frac{F_a}{F} > e$$

Tabela 3.12

$\frac{F_a}{C_0}$	е	х	у
0,025	0,22	0,56	2
0,04	0,24	0,56	١,8
0,07	0,27	0,56	١,6
0,13	0,3 l	0,56	I,4
0,25	0,37	0,56	١,2
0,50	0,44	0,56	I

 $\frac{F_a}{F_r} = \frac{1800}{3000} = 0,6$

 $\frac{F_a}{C_0} = \frac{1800}{24\,000} = 0,075 \Longrightarrow e \cong 0,27, x = 0,56 e y = 1,6$

Portanto, como $\frac{F_a}{F_r} = 0,6 > e$, o valor da força dinâmica equivalente é dado

por: $P = 0.56 \cdot 3000 + 1.6 \cdot 1800 = 4560 \implies P = 4560 N.$

Substituindo na fórmula da vida nominal, temos:

$$L_{h} = \frac{10^{6}}{60 n} \left(\frac{C}{P}\right)^{p} = \frac{10^{6}}{60 \cdot 870} \left(\frac{41000}{4560}\right)^{3} = 13925 , \ L_{h} = 13925$$

3.8.2 Mancais de deslizamento

Mancais de deslizamento são elementos em forma de anel, em geral de bronze ou outro material antifricção, usualmente denominados bucha e utilizados como apoios para eixos de máquinas. Como apresentam inúmeras características positivas e negativas em relação aos mancais de rolamento, a escolha deverá ser feita com critério específico, para cada aplicação.

A tabela 3.13 mostra a comparação entre mancais de deslizamento e de rolamento.

Caract	erísticas	Mancal de deslizamento	Mancal de rolamento		
Amortecimento de	choques e vibrações	Melhor*	-		
D'	radial	Melhor*	-		
Dimensao	axial	-	Menor		
Atrito por partida		-	Menor*		
Manutenção		-	Menor*		
Combinação de car	ga	-	Melhor*		
Nível de ruído		Menor	-		
Sensibilidade à poeir	ra	Menor	-		
Custo para grandes	mancais	Menor	-		
Consumo de lubrifio	cante	-	Menor		
Potocõos	altas	Melhor	-		
baixas		-	Melhor		
* Vantagens mais signific	ativas.				

Existem muitas aplicações nas quais as cargas são leves, sem muita responsabilidade e sem necessitar de tolerâncias justas entre o eixo e a bucha, com pouca ou nenhuma lubrificação. Para aplicações com tais características não há necessidade de usar mancais de rolamento. Por motivos econômicos, nessas condições, os rolamentos são normalmente substituídos por buchas.

925 horas

Tabela 3.13

Comparação entre mancais de deslizamento e mancais de rolamento.

Tipos de mancais de deslizamento

Temos inúmeros tipos de mancais de deslizamento, muitas vezes desenvolvidos para aplicações específicas. Entretanto, apresentamos apenas os mais representativos, ou seja, os mancais radiais, axiais e longitudinais.

Quanto a sua construção, os mancais radiais podem ser inteiriços ou bipartidos, conforme indicado na figura 3.54.

Nas buchas normalmente são feitas ranhuras para distribuição dos lubrificantes. As ranhuras sem canais de saída podem ser observadas nos esquemas a, b e c da figura 3.55. Para esse tipo de ranhura, a alimentação do lubrificante é limitada.

Os tipos de ranhuras para lubrificação por graxa são indicados nos esquemas d, e, f. As ranhuras com canais passantes são mostradas nos esquemas g, h e i. Esse tipo de ranhura facilita a transferência de calor.

Figura 3.55 Diversos tipos de ranhuras nas buchas.

Dimensionamento de mancais radiais

Como normalmente o diâmetro do eixo já está definido, o dimensionamento do mancal reduz-se à determinação de seu comprimento ou largura (ℓ) .

As dimensões principais para mancais são indicadas na figura 3.56.

Na figura:

d = diâmetro do eixo;

D = diâmetro interno da bucha;

 ℓ = largura do mancal.

Nas condições de funcionamento, o mancal está sendo solicitado por uma carga F e rotação n, e a distribuição da pressão conforme representado na figura 3.57.

Figura 3.56

Dimensões principais de um mancal radial.

Figura 3.57

Distribuição de pressão em um mancal.

Para condições mais realistas, como indicado na figura 3.58, o cálculo da pressão torna-se complexo. Dessa forma, simplificamos com a seguinte hipótese: a pressão (p) distribui-se uniformemente na projeção do diâmetro do eixo ao longo da bucha.

Nessa condição, temos:

$$p = \frac{F}{S} \text{ (pressão média do mancal)}$$
$$p = \frac{F}{d \cdot \ell}$$

em que:

F = carga nominal (N); ℓ = largura do mancal (cm); p = diâmetro do eixo (cm);

 $S=d\cdot\ell\,.$

Para velocidade, $v < 0,3 \frac{m}{s}$.

A verificação é feita quanto à pressão admissível (p_{adm}):

$$p = \frac{F}{d \cdot \ell} \le p_{adm} \text{ ou } \ell \ge \frac{F}{d \cdot p_{adm}}$$

Para velocidade, $v > 0,3 \frac{m}{s}$.

A verificação será feita pelo produto p · V:

$$\mathbf{p} \cdot \mathbf{v} \leq (\mathbf{p} \cdot \mathbf{v})_{max}$$

Como o desenvolvimento de mancais envolve materiais, lubrificantes, folga entre eixo e mancal, uso de tabelas, gráficos e dados práticos, a continuidade do estudo depende de consulta complementar a bibliografias técnicas.

3.9 Chavetas

As chavetas têm a função de unir dois elementos mecânicos a fim de transmitir momento torçor (torque), por exemplo, a união de eixos com acoplamentos, com polias e com engrenagens. A figura 3.59 mostra esquematicamente a união de elementos por meio de chavetas.

3.9.1 Chavetas paralelas retangulares ou quadradas

Entre os inúmeros tipos de chavetas existentes, as mais usadas são as paralelas retangulares ou quadradas regidas pela norma ABNT P-PB-122.

Essas chavetas são fabricadas em três tipos fundamentais, A, B e C, como mostra a figura 3.60, e possuem dimensões e tolerâncias definidas por norma.

As dimensões b e h da seção transversal são padronizadas em função do diâmetro do eixo. O comprimento, ℓ , é determinado por cálculo, ou proporcional ao elemento em que for aplicado. As dimensões principais das chavetas são indicadas na figura 3.61.

Figura 3.59

Acoplamento de eixo e engrenagem por meio de chaveta.

Figura 3.60

Tipos fundamentais de chavetas.

Figura 3.61 Dimensões principais das chavetas.

3.9.2 Tipos de ajustes na montagem

A norma ABNT P-PB-122 define também as tolerâncias para rasgos de chaveta em função do diâmetro do eixo. Esquematicamente, para um acoplamento, as tolerâncias são indicadas na figura 3.62.

Figura 3.62 Tolerâncias para o acoplamento.

Eixo-chaveta. Ajuste com folga: h9/H9 Ajuste normal: h9/N9 Ajuste com interferência: h9/P9 Chaveta-cubo. Ajuste com folga: h9/D10 Ajuste normal: h9/JS9 Ajuste com interferência: h9/P9

A ISO/R775 recomenda, para ponta de eixo de máquinas elétricas, tolerâncias para o rasgo do eixo P9, e rasgo do cubo H9.

3.9.3 Cálculo do comprimento L da chaveta

Como os valores de b e h já estão definidos em função do diâmetro do eixo, então, basta dimensionar o comprimento L da chaveta ao cisalhamento e a compressão (esmagamento). A figura 3.63 indica esquematicamente alguns carregamentos e a área sujeita ao cisalhamento.

Cisalhamento na chaveta

em que: $S_c =$ área solicitada ao cisalhamento.

Esmagamento na chaveta

O esmagamento pode ocorrer na chaveta ou no rasgo do cubo.

$$\sigma = \frac{F}{S_{e}} \le \sigma_{adm}$$
$$\frac{F}{\frac{h \cdot L_{e}}{2}} \le \sigma_{adm} \Rightarrow L_{e} \ge \frac{2F}{h \cdot \sigma_{adm}}$$

em que: S_e = área solicitada ao esmagamento.

O comprimento L deve ser o maior entre os dois critérios: $L > L_c e L > L_e$

Exemplo

Um motor elétrico possui potência nominal de 25 hp, rotação de 1 165 rpm e, na carcaça, 180 L. Sabendo que o diâmetro da ponta de eixo mede 48 mm, determinar o comprimento mínimo da chaveta.

$$\mathrm{Dados:} \ \sigma_{adm} = 100 \frac{N}{mm^2} \, ; \ \ \tau_{adm} = 60 \frac{N}{mm^2}$$

CAPÍTULO 3

Figura 3.63

Indicação dos

carregamentos.

Solução

O torque do eixo é dado pela equação:

$$M_{t} = 9550 \frac{N}{n} \quad 25 \text{ hp} \approx 18,65 \text{ kW}$$
$$M_{t} = 9550 \cdot \frac{18,65}{1165} = 152,88 \text{ N} \cdot \text{m}$$
$$M_{t} = \frac{\text{Fd}}{2} \Rightarrow \text{F} = \frac{2M_{t}}{d} = \frac{2 \cdot 152880}{48} = 6370 \text{ N}$$

O comprimento da chaveta ao cisalhamento (L_c) é obtido por:

$$L_{c} \ge \frac{F}{b \cdot \tau_{adm}} = \frac{6370}{14 \cdot 60} = 7,6 \Longrightarrow L_{c} = 7,6 mm$$

A largura b = 14 mm e a altura de 9 mm da seção transversal da chaveta foram obtidas da norma PB-122.

Comprimento da chaveta ao esmagamento (ℓ_{e}):

$$\ell_{e} \geq \frac{2F}{h \cdot \sigma_{adm}} = \frac{2 \cdot 6370}{9 \cdot 100} = 14, 2 \Longrightarrow \ell_{e} = 14, 2 \text{ mm}$$

Então: $\ell > \ell_c > \ell_c \Rightarrow \ell > 14,2 \text{ mm}$

Observe que o comprimento da chaveta foi pequeno, porque o torque é inversamente proporcional à rotação. Assim, se a rotação fosse dez vezes menor, o comprimento da chaveta seria dez vezes maior.

3.9.4 Outros tipos de chavetas

Chaveta Woodruff (meia-lua)

Esse tipo de chaveta é muito usado em máquinas e na indústria automobilística, por alojar-se bem no rasgo do eixo. Facilita ainda a montagem em eixos cônicos, adaptando-se bem à conicidade do fundo do rasgo do cubo, além de gerar menos concentrações de tensão e oferecer maior facilidade de usinagem. É utilizada em transmissões de torques pequenos e médios. Sua representação é indicada na figura 3.64.

A principal desvantagem desse tipo de chaveta é o enfraquecimento do eixo em razão da necessidade de maior profundidade para seu alojamento.

Como curiosidade, citamos outros tipos de chavetas.

• Chavetas inclinadas com cabeça e sem cabeça

Esse tipo de chaveta é fácil de montar e desmontar. A figura 3.65 indica as dimensões principais desse elemento.

• Chavetas Pratt e Whitney, ou chavetas embutidas

O rasgo para o alojamento do eixo possui o mesmo comprimento da chaveta arredondada nos extremos, como mostra a figura 3.66.

• Chavetas tangenciais

São formadas por um par de cunhas, colocadas uma em cada rasgo, defasadas entre si 120°, conforme mostra a figura 3.67. São utilizadas quando há necessidade de absorver impacto nos dois sentidos de rotação.

Figura 3.64 Chaveta Woodruff (meia-lua).

Figura 3.65

Chaveta inclinada com cabeça e sem cabeça.

Figura 3.66 Chaveta embutida.

Figura 3.67 Chavetas tangenciais.

3.10 Anéis elásticos, pinos e cupilhas

3.10.1 Anéis elásticos

Os anéis elásticos são elementos de máquinas usados em eixos ou furos, com a função de posicionar e impedir movimentos axiais de peças.

Como os anéis são confeccionados em aço mola, normalmente a carga axial aplicada é limitada pela resistência do material do eixo ou do furo no qual é feita a ranhura para seu alojamento.

Figura 3.68 Anéis elásticos para eixos e para furos. O anel elástico é conhecido também como anel de retenção, anel de segurança ou anel de trava. A figura 3.68 mostra anéis elásticos para eixos e para furos com seus respectivos canais.

226

O anel elástico tem a função de impedir movimentos de translação do eixo. Como exemplo, o esquema a da figura 3.69 mostra uma engrenagem cuja translação é impedida por um anel elástico na ponta do eixo, e o esquema b exibe um rolamento fixo ao cubo cuja translação é limitada por três anéis elásticos.

Exemplo

Determinar as dimensões A, B, C e D do canal do eixo no qual será colocado um anel elástico para fixação do rolamento, como mostra a figura 3.70.

Solução

Fornecido o diâmetro do eixo, de acordo com a tabela referente a eixos na seção 3.13, concluímos que as medidas são:

 $A=33^{\rm +0,1}\,mm;\,B=2,15\,\,mm\;(\rm minimo);\,C=57^{\rm -0,300}\,\,mm;\,D=4,5\,\,mm$

Figura 3.69

Exemplos de utilização de anéis elásticos.

A =
$$33^{+0,1}_{0}$$

B = 2,15 mín.
C = $57^{-0,300}_{0,300}$
D = 4,5

Figura 3.70

Exemplo de um eixo no qual será colocado um anel elástico.

3.10.2 Pinos

Pinos são elementos de união entre duas ou mais peças com a finalidade de posicionar ou fixar as peças e, assim, garantir alinhamento e montagem. São usados tanto nos casos de manutenção como para transmitir forças ou torques.

Os pinos de superfície lisa mais comuns são o pino cônico, mostrado no esquema *a* da figura 3.71, o pino cônico com rosca, esquema *b*, e o pino cilíndrico, esquema *c*.

O pino cônico (a) é fabricado com conicidade 1:50 e pode ser colocado várias vezes em um mesmo furo.

O pino cônico (b), com haste roscada, tem a função de facilitar a retirada, uma vez que um simples torque na porca o remove.

O pino cilíndrico (c) necessita de um furo com tolerâncias adequadas, porque é solicitado por esforços cortantes.

Exemplos de conjuntos com tais pinos são indicados e comentados na figura 3.72.

Figura 3.72 Exemplos de montagem com pinos.

Figura 3.71 Pinos de superfície lisa:

a) pino cônico;

c) pino cilíndrico.

b) pino cônico com rosca;

Os pinos cilíndricos ou cônicos, mostrados na figura 3.73 com entalhe parcial ou total na superfície externa, podem ser fixados diretamente em um furo feito com broca, sem necessidade de acabamento ou precisão no diâmetro.

Temos também o pino elástico ou pino tubular partido de elevada resistência ao corte, fabricado de fita de aço para mola enrolada. Mesmo depois de colocado no furo de menor diâmetro, esse pino permanece com o efeito mola-fixo no furo. A figura 3.74 mostra esquematicamente sua geometria.

Dimensionamento dos pinos

Calcula-se o diâmetro do pino para uma união, conforme mostra a figura 3.75, submetida à carga P, como solicitação ao cisalhamento puro.

Dessa forma:

em que z = número de pinos.

Figura 3.73 Exemplos de pinos com entalhes.

Figura 3.74 Pino elástico.

Figura 3.75 Exemplo de união.

Na transmissão de torque através do pinhão, fixado ao eixo por pino cilíndrico, como indicado na figura 3.76, tem-se para o dimensionamento:

Figura 3.76 Eixo fixado por pino.

$$M_{t} = F \cdot \frac{D}{2} \Rightarrow F = \frac{2M_{t}}{D}$$
$$\tau = \frac{F}{2\frac{\pi d^{2}}{4}} \le \tau_{adm} \Rightarrow \frac{2\frac{M_{t}}{D}}{2\frac{\pi d^{2}}{4}} \le \tau_{adm} \Rightarrow$$

$$\frac{\pi d^2}{4} \cdot \tau_{adm} \geq \frac{M_t}{D} \Longrightarrow d \geq \sqrt{\frac{4 \cdot M_t}{\pi \cdot D \cdot \tau_{adm}}}$$

3.10.3 Cupilhas ou contrapinos

Cupilha ou contrapino é um elemento obtido de um arame maleável de seção semicircular que, dobrado convenientemente, forma uma cabeça e um corpo cilíndrico.

Regido pela norma ABNT P-PB-171, é utilizado para limitar o movimento axial de alguns elementos de máquinas. Pode ser designado da seguinte forma:

Contrapino $d \times \ell$ – Material Norma

em que d é o diâmetro nominal, ℓ é o comprimento e o material que o compõe é norma técnica.

Exemplo: a denominação para um contrapino de aço com diâmetro nominal igual a 3,2 mm, comprimento igual a 50 mm, é:

Contrapino 3,2 × 50 – Aço ABNT P-PB-171

Informações complementares são indicadas na figura 3.77 e na tabela 3.14.

Diâr	Diâmetro nominal		١,2	١,6	2	2,5	3,2	4	5	6,3	8	10	13
	máximo	0,9	I	١,4	۱,8	2,3	2,9	3,7	4,6	5,9	7,5	9,5	12,4
D	mínimo	0,8	0,9	١,3	١,7	2,1	2,7	3,5	4,4	5,7	7,3	9,3	12,4
a	máximo	١,6	2,5	2,5	2,5	2,5	3,2	4	4	4	4	6,3	6,3
b		3	3	3,2	4	5	6,4	8	10	12,6	16	20	26
	máximo	۱,8	2	2,8	3,6	4,6	5,8	7,4	9,2	11,8	15	19	24,8
С	mínimo	١,6	١,7	2,4	3,2	4	5,1	6,5	8	10,3	13,1	16,6	21,7
	acima de	3,5	4,5	5,5	7	9	П	14	20	27	39	56	80
a	até	4,5	5,5	7	9	П	14	20	27	39	56	80	110
	acima de	3	4	5	6	8	9	12	17	23	29	44	69
a ₂	até	4	5	6	8	9	12	17	23	29	44	69	120
ℓ_1	mínimo	١,5	۱,8	2,3	2,8	3,5	4,6	5,5	7	9,2	12	14	15,5
ℓ_2	mínimo	4	5	5	6	6	8	8	10	12	14	16	20

Figura 3.77

Dimensões e informações complementares para contrapinos.

Tabela 3.14

Dimensões (em mm) e informações complementares para contrapinos.

O diâmetro do furo de alojamento é o mesmo que o diâmetro do pino com tolerância H14 para $d_1 > 1,2$ e H13 para $d_1 < 1,2$.

A figura 3.78 mostra aplicações práticas de cupilhas.

Figura 3.78 a) União de peças com furos no pino com duas cupilhas;

limitado pela cupilha

b) comprimento L da mola

3.11 Parafusos, porcas e arruelas

Entre os elementos de união desmontáveis, os parafusos são os mais utilizados, pelo custo reduzido e fácil aplicação.

Os parafusos podem ser **de fixação** ou **de movimento**. Os parafusos de movimento são usados na transmissão de forças. As roscas têm formato trapezoidal, quadrado ou de dente de serra.

Por serem mais utilizados em máquinas e equipamentos, apenas os **parafusos de fixação** são abordados neste livro.

3.11.1 Características dos parafusos de fixação

O parafuso de fixação pode ser dividido em três partes: cabeça, corpo e rosca, conforme indicado na figura 3.79.

A figura 3.80 mostra esquematicamente diversas formas de cabeça de parafusos.

A rosca normalmente é de perfil triangular, com ângulo de 60° ou 55°, dimensões em milímetros (rosca métrica) ou em polegadas (rosca UNC e rosca Whitworth). As dimensões principais podem ser observadas na figura 3.81.

Define-se o passo de uma rosca (**p**) como a distância entre dois filetes consecutivos, medida paralelamente ao eixo.

Avanço é a distância que a porca percorre paralelamente ao eixo da rosca, quando gira uma volta. Exemplo: em uma rosca de três entradas, o avanço é equivalente a três vezes o passo.

A rosca pode ser grossa, média e fina. A rosca de uso corrente é a grossa, que não é recomendada em aplicações em que haja vibrações.

A rosca fina, muito usada na indústria automobilística, é a mais indicada para suportar vibrações.

A designação da rosca métrica é feita pela letra M (maiúscula), seguida pelos números indicativos do diâmetro nominal (diâmetro externo) e do passo, em milímetros, separados pelo sinal "×". Exemplo: rosca M10 × 1,25.

Na designação da rosca de passo normal pode ser suprimida a informação referente ao passo. Exemplo: rosca M10.

Figura 3.81

Figura 3.80

Diversas formas de cabeça de parafuso.

Dimensões principais de uma rosca triangular.

3.11.2 Classes de resistência de parafusos

Sistema de designação

Os símbolos são formados por dois algarismos separados por um ponto (x.x).

a) O primeiro algarismo indica $\frac{1}{100}$ da resistência à tração nominal (R_m) em MPa.

b) O segundo algarismo indica 10 vezes a relação entre o escoamento nominal (R_e) e a resistência à tração nominal (R_m) .

Por exemplo, em um parafuso com classe de resistência 5.6, temos:

$$\frac{R_{m}}{100} = 5 \implies R_{m} = 500 \text{ MPa}$$

$$10 \cdot \frac{R_{e}}{R_{m}} = 6 \implies R_{e} = \frac{6R_{m}}{10} = \frac{6 \cdot 500}{10} = 300 \implies R_{e} = 300 \text{ MPa}$$

Esses símbolos com dois algarismos separados pelo ponto, normalmente, vêm marcados nos parafusos e são utilizados quando é necessária a certificação de suas propriedades mecânicas. A figura 3.82 mostra esquematicamente sua localização.

Figura 3.82 Indicação da classe de resistência.

3.11.3 Fixação por atrito

As fixações por atrito são dimensionadas em função da força axial de compressão (F_a) entre as peças, originada pelo torque de aperto dado no parafuso. Este, quando solicitado, desenvolve uma força de atrito (F_{at}) que mantém as partes unidas.

Nas tabelas 3.15 e 3.16 constam os valores de torque, força de aperto e diâmetro dos parafusos cuja classe de resistência é respectivamente 5.6 e 8.8.

D (mm)	P (mm)	As (mm²)	Frup (kgf)	Fcismax (kgf)	Fa (kgf)	Tamin (kgf*m)	Tamax (kgf*m)
4	0,7	8,78	448	161	226	0,14	0,18
5	0,8	14,18	723	252	364	0,29	0,36
6	I.	20,12	I 026	363	517	0,50	0,62
8	1,25	36,61	I 866	645	940	١,2	١,5
10	١,5	57,99	2956	1 008	I 490	2,4	3,0
12	1,75	84,27	4295	I 452	2165	4,2	5,2
16	2	156,67	7 985	2 582	4024	10	13
20	2,5	244,79	12477	4 034	6 288	20	25
24	3	352,5	17967	5 809	9054	35	43

D (mm)	P (mm)	As (mm²)	Frup (kgf)	Fcismax (kgf)	Fa (kgf)	Tamin (kgf*m)	Tamax (kgf*m)
4	0,7	8,78	743	268	483	0,31	0,39
5	0,8	14,18	I 200	419	781	0,62	0,78
6	I	20,12	I 703	603	1108	١,06	1,33
8	1,25	36,61	3 099	I 072	2016	2,6	3,2
10	1,5	57,99	4908	l 675	3 93	5,1	6,4
12	1,75	84,27	7133	2412	4640	8,9	11,1
16	2	156,67	13261	4289	8627	22	28
20	2,5	244,79	20719	6701	13479	43	54
24	3	352,5	29836	9649	19409	75	93

Exemplo

Determinar o diâmetro do parafuso para suportar a carga de 5 kN, somente por atrito, para o carregamento indicado na figura 3.83.

Dados: Q = 5 kN; $\mu = 0,15$; parafuso de classe 8.8.

Tabela 3.15

Classe de resistência 5.6.

Tabela 3.16Classe de resistência 8.8.

Figura 3.83

Figura 3.84

Exceção à regra.

Solução

$$Q \leq F_{at} \Rightarrow Q \leq F_{a} \cdot \mu \Rightarrow F_{a} \geq \frac{Q}{\mu} \Rightarrow F_{a} = \frac{5000}{0,15} = 33\,333\,N \cong 3\,401\,kgf$$

Com $F_a = 3401$ kgf, da tabela da classe de resistência 8.8, escolhe-se o parafuso M12, que tem $F_a = 4640$ kgf.

Se considerarmos o coeficiente de segurança, conforme o tipo de solicitação, o diâmetro do parafuso ficaria muito grande e inviável para a aplicação.

A solução mais adequada seria a utilização de mais parafusos, ou fazer o parafuso trabalhar sujeito a cisalhamento.

Como sabemos, os parafusos devem estar sujeitos apenas a esforços de tração. O parafuso, porém, pode estar sujeito a cisalhamento se for colocado sem folga no furo das peças, de modo que a parte roscada não esteja na região sujeita a cisalhamento, como mostra a figura 3.84.

Então,
$$\tau = \frac{Q}{S} \le \tau_{adm} \Rightarrow S \ge \frac{Q}{\tau_{adm}}$$

 $S = \frac{\pi d_2}{4} \ge \frac{Q}{\tau_{adm}} \Rightarrow d \ge \sqrt{\frac{4Q}{\pi \cdot \tau_{adm}}}$

Retomando os dados do exemplo anterior e adotando $\tau_{adm} = 100 \text{ N/mm}^2$, temos:

$$d \ge \sqrt{\frac{4 \cdot 5000}{\pi \cdot 100}} \simeq 8 \Longrightarrow d \ge 8 mm$$

Observe que se obtém uma solução com o diâmetro menor, mesmo levando em conta o coeficiente de segurança.

Existem outras soluções que podem ser adotadas caso os esforços sejam de cisalhamento. As técnicas consistem em descarregar o esforço cortante em outros elementos, tais como: pinos, chavetas, buchas, ressaltos etc. Algumas dessas técnicas são esquematicamente mostradas na figura 3.85.

3.11.4 Furos de passagem de parafusos

Furos de passagem de parafusos, se realizados conforme recomendação normativa, não exigem a utilização de arruelas (lisas ou de pressão), exceto quando os elementos estão sujeitos a vibrações. Nesse caso, usaremos arruelas de pressão.

A arruela lisa deve ser utilizada se o diâmetro do furo de passagem for superior ao estipulado por norma, ou em furos do tipo oblongo.

Algumas montagens são mostradas na figura 3.86.

Os tipos e dimensões de parafusos, porcas e arruelas de pressão e lisas encontram-se tabelados pela norma ABNT, ou em livros, catálogos de fabricantes, manuais etc.

Figura 3.85

Dispositivos para fixação de uniões sujeitas a esforços cortantes.

Figura 3.86 Exemplos de montagens com arruelas.

Tabela 3.17Furo de passagem paraparafusos ABNT-PB50dimensões em mm.

Para parafusos de rosca métrica, a tabela 3.17 fornece os valores do diâmetro do furo de passagem.

	Diâmetro	do furo de p	assagem D		Diâmetro do furo de passagem D					
Diâmetro nominal da		Séries		Diâmetro nominal da	Séries					
d	Fina ⁽¹⁾ H 12	Média H 13	Grossa H 14	d	Fina ⁽¹⁾ H 12	Média H 13	Grossa H 14			
I.	١,١	١,2	١,3	30	31	33	35			
١,2	١,3	1,4	1,5	33	34	36	38			
١,4	1,5	١,6	١,8	36	37	39	42			
١,6	١,7	١,8	2,0	39	40	42	45			
١,8	١,9	2,0	2,1	42	43	45	48			
2	2,2	2,4	2,6	45	46	48	52			
2,2	2,3	2,7	2,8	48	50	52	56			
2,5	2,7	2,9	3,1	52	54	56	62			
3	3,2	3,4	3,6	56	58	62	66			
3,5	3,7	3,9	4,1	60	62	66	70			
4	4,3	4,5	4,8	64	66	70	74			
5	5,3	5,5	5,8	68	70	74	78			
6	6,4	6,6	7	72	74	78	82			
7	7,4	7,6	8	76	78	82	86			
8	8,4	9	10	80	82	86	91			
10	10,5	П	12	90	93	96	101			
12	13	14	15	100	104	107	112			
14	15	16	17	110	114	117	122			
16	17	18	19	120	124	127	132			
18	19	20	21	125	129	132	137			

(Call
ALL PROPERTY.
238
Contraction of the second

Diâmotro	Diâmetro	do furo de pa	assagem D		Diâmetro do furo de passagem D				
Diâmetro nominal da rosca		Séries		Diâmetro nominal da rosca	Séries				
d	Fina ⁽¹⁾ H 12	Média H 13	Grossa H 14	d	Fina ^(I) H 12	Média H 13	Grossa H 14		
20	21	22	24	130	134	137	144		
22	23	24	26	140	144	147	155		
24	25	26	28	150	155	158	165		
27	28	30	32						

(I) Os furos de passagem da série fina devem ter um escareamento na área correspondente à concordância entre a cabeça e o corpo do parafuso.

As dimensões d e D são indicadas na figura 3.87.

3.12 Molas

As molas são usadas para exercer forças, proporcionar deslocamentos ou, ainda, armazenar energia e absorver choques, no regime elástico.

Temos diversos tipos de molas, mas as de maior aplicação são as helicoidais, feitas de fios de seção circular. As molas helicoidais podem ser solicitadas às cargas de tração ou compressão.

3.12.1 Dimensões principais da mola cilíndrica helicoidal

A mola helicoidal recebe esse nome porque possui o tipo de enrolamento em forma de hélice, que pode ser à direita ou à esquerda. A figura 3.88 indica as dimensões principais de uma mola helicoidal e sua respectiva nomenclatura.

Figura 3.87

Dimensões para consulta à tabela 3.17.

- P = carga axialD = diâmetro médio da mola
- d = diâmetro do fio da mola
- α = ângulo de hélice
- p = passo da mola
- R = raio médio da mola
- μ = folga entre fios da mola

Figura 3.88

Dimensões principais e nomenclatura para mola helicoidal.

As molas normalmente são montadas de modo que fiquem ligeiramente comprimidas, ou seja, possuem um carregamento inicial, indicado como P_i na figura 3.89. Em qualquer circunstância para a qual a mola foi projetada deverá existir uma folga mínima (μ_0), de modo que, para uma carga P maior que P_i, os fios de hélice não se toquem.

Figura 3.89 Mola cilíndrica helicoidal.

Na figura:

- L = comprimento livre ou sem carga;
- L_i = comprimento inicial da mola após aplicar a carga inicial (P_i);
- $L_0 =$ comprimento da mola carregada;
- f_i = flecha inicial da mola;
- f_{μ} = flecha útil da mola;
- f = flecha da mola;
- $\mu_0 =$ folga mínima entre os fios da mola.

Costuma-se adotar para molas de flexão o ângulo de hélice (α), entre 6° e 10°:

 $6^\circ \le \alpha \le 10^\circ$

Portanto,
$$tg\alpha = \frac{p}{2\pi R} = \frac{p}{\pi \cdot D}$$
.

Essa análise considera as extremidades da mola em esquadro e esmerilhadas.

3.12.2 Tensões em molas cilíndricas helicoidais

A figura 3.90 mostra uma mola cilíndrica helicoidal sujeita a compressão, de fio de seção circular, carregada por uma força axial P. Vamos imaginar que cortássemos a mola na seção transversal A e mantivéssemos os esforços que a parte removida exercia antes do corte. Na seção, teríamos os seguintes esforços internos solicitantes:

 $N = P \cdot sen\alpha$

 $Q = P \cdot \cos \alpha$

 $M = P \cdot sen\alpha \cdot R$

 $M_{t} = P \cdot \cos \alpha \cdot R$

Para a maioria dos casos, o ângulo α é pequeno se a relação d/D também for pequena. Os efeitos dos esforços internos solicitantes N, Q e M podem ser desprezados em relação ao momento de torção (Mt), e o dimensionamento é feito levando em conta apenas o torque.

Figura 3.90

Esquema de tensões em mola cilíndrica helicoidal.

Portanto, a tensão de cisalhamento $\tau \in \tau = \frac{M_t}{W_t}$, em que:

$$W_{t} = \frac{\pi d^{3}}{16} \quad e \quad M_{t} = P \cdot \frac{D}{2}$$
$$\tau = \frac{P \cdot \frac{D}{2}}{\frac{\pi d^{3}}{16}} = \frac{8P \cdot D}{\pi d^{3}} \Rightarrow \tau = \frac{8 \cdot P \cdot D}{\pi \cdot d^{3}}, \text{ ou } d = \sqrt[3]{\frac{8 \cdot P \cdot D}{\pi \cdot \tau}} \text{ ou } P = \frac{\pi \cdot d^{3} \cdot \tau}{8 \cdot D}$$

Se considerarmos o efeito da força cortante Q e o efeito devido à curvatura (D/d), temos de corrigir a tensão τ com a constante K, chamada fator de correção Wahl.

$$\tau = \mathbf{K} \cdot \frac{\mathbf{8} \cdot \mathbf{P} \cdot \mathbf{D}}{\pi \cdot \mathbf{d}^3}$$

O valor de K pode ser obtido da equação:

$$K = \frac{(4C - 1)}{(4C - 4)} + \frac{0,615}{C}$$
, em que $C = \frac{D}{d}$.

3.12.3 Fórmula da flecha e comprimento da mola

A flecha ou deflexão da mola cilíndrica helicoidal é dada pela expressão:

$$f = \frac{\pi \cdot N \cdot D^2 \cdot \tau}{d \cdot G}$$

em que:

N = número de espiras ativas ou úteis; $G = m \delta du lo de elasticidade transversal.$

O comprimento mínimo da mola (L) livre ou sem carga, com duas espiras inativas, é dado pela equação:

 $L \ge (N+2)d + f + 0, 1d \cdot N$

A primeira parcela da fórmula é o comprimento da mola sólida, a segunda é a flecha e a última refere-se à folga mínima entre os fios, após carregamento, adotada com valor de 10% do diâmetro do fio da mola.

Exemplo

Determinar o diâmetro e o número de espiras úteis da mola cilíndrica helicoidal no dispositivo da figura 3.91, sem considerar o fator de correção Wahl.

Dados: $\tau_{adm} = 400 \text{ MPa}$; P = 150 N; G = 85 GPa.

Solução

Como o carregamento é sem carga inicial, o valor da flecha é dado por:

 $f = 60 - 50 = 10 \Rightarrow f = 10 mm$

Em função do diâmetro do furo = 22 mm, adota-se D = 16 mm para o diâmetro da mola. Pela fórmula do diâmetro do fio da mola, temos:

$$d = \sqrt[3]{\frac{8 \cdot P \cdot D}{\pi \cdot \tau_{adm}}} = \sqrt[3]{\frac{8 \cdot 150 \cdot 16}{\pi \cdot 400}} \cong 2,48 \implies d = 2,5 \text{ mm}$$

A partir da fórmula da flecha, calculamos o número de espiras (N).

$$f = \frac{\pi ND^2 \cdot \tau_{adm}}{d \cdot G} \Longrightarrow N = \frac{f \cdot d \cdot G}{\pi \cdot D^2 \cdot \tau_{adm}} \Longrightarrow N = \frac{10 \cdot 2, 5 \cdot 85 \cdot 10^2}{\pi \cdot 16^2 \cdot 400}$$

...7 espiras

Complementando o exemplo, vamos verificar a folga entre as espiras.

Figura 3.91

-=6,6 espiras

Quando carregada, a folga é μ_0 e o comprimento $L_0 = 50$ mm.

$$L_0 = z(\mu + d) + 2d \Longrightarrow L_0 - 2d = z(\mu + d) \Longrightarrow \mu = \frac{L_0 - 2d}{z_0} - d$$

Substituindo, temos: $\mu = \frac{50 - 2 \cdot 2, 5}{7} - 2, 5 = 3, 9$

Sabendo a folga mínima, $\mu_0 = 0, 1 \cdot d = 0, 1 \cdot 2, 5 \Rightarrow \mu_0 = 0, 25 \text{ mm}$.

Como $\mu = 3,9 \text{ mm}$ e $\mu_0 = 0,25 \Longrightarrow \mu > \mu_0$, a condição está satisfeita.

3.13 Anexos – Catálogos de fabricantes

3.13.1 Catálogo de correias da empresa Gates do Brasil

Correias Gates, fabricadas com Neoprene			Y	rates.	Fate	or de Servi
álculo de transmissão por	correia en	n "V"				
ados necessários: 1. Tipo do M 2. Potência 3. Rotação 4. Tipo de M	Motor do Motor do Motor Máquina ou Equi	ipamento	 Rotação Distânci Tempo ou Equi 	o da Máquina ou ia entre Centros de Trabalho diár ipamento.	Equipamen io da Máqui	to na
- Determine a Potência Proje HPP = HP x Fs	on	de, HP = F Fs = F	otência do M ator de Serv	Motor (HP) iço (Tabela 1)		
Máquina Conduzida	/iço		Máquina	Condutora		
As máquinas relacionadas são apenas exemplos representativos. Escolha o grupo cujas características sejam mais semelhantes à máquina em consideração.	Torque Normal, Rotor Gaiola de J Sincrônicos, Divisão de Fase Motores DC: Enrolados em De Motores Estacion Combustão interr	Anéis, rivação ários: na de Multiplos	Cilindros	Alto Torque, Alto Repulsão-Indução Enrolado em Séri Motores DC: Enroiados em Séri Motores Estacion Combustão interr Eixos de Transmi Embreagens	Escorregamen , Monofásico, e, Anéis Coletc ie, Enrolados (ários: a de um Cilind ssão	nto, pres mistos Iro•
	Serviço Intermitente	Serviço Normal	Serviço Contínuo	Serviço Intermitente	Serviço Normal	Serviço Contínuo
	3-5 hs diárias ou periodicamente	8-10 hs diáriais	16-24 hs diárias	3-5 hs diárias ou periodicamente	8-10 hs diárias	16-24 hs diárias
Agitadores para Líquidos Sopradores e Exaustores Bombas Centrifugas e Compressores Venilladores até 10 HP Transportadores de Carga Leve	1,0	1,1	1,2	1,1	1,2	1,3
Correias Transportadoras para Areia e Cereais Ventiladores de mais de 10 HP Geradores Eixos de Transmissão Maquinário de Lavanderia Punções, Prensas e Tesourões Máquinas Gráficas Bombas Centrífugas de Deslocamento Positivo Peneiras Vibratórias Rotativas	1,1	1,2	1,3	1,2	1,3	1,4
Maquinário para Olaria Elevadores de Canecas Excitadores Compressores de Pistão Moinhos de Martelo Moinhos para Indústria de Papel Bombas de Pistões Serrarias e Maquinário de Carpintaria Maquinários Téxteis	1,2	1,3	1,4	1,4	1,5	1,5
Britadores (Giratórios e de Mandíbulas) Guindastes	1,3	1,4	1,5	1,6	1,6	1,8

O fator de Serviço deverá ser aplicado sôbre o valor para regime contínuo, mencionado na placa de identificação do próprio motor. Subtraia 0,2 (com um fator de serviço mínimo de 1,0) quando se tratar de classificação máxima intermitente. Recomenda-se o uso de um Fator de Serviço de 2,0 para equipamento sujeito a sufocações ou afogadiços.

Correias Gates, fabricadas com Neoprene III. Determine os Diâmetros das Polias Através das Tabelas 2 (Correias Super HC) e 3 (Correias Hi-Power II), do motor (HP) e da rotação do eixo mais rápido, segundo norma NE Tabela 2 — Tab Diâmetros externos mínimos recomendados Diâ para correias Super HC (em polegadas). para RPM do motor (50 e 60 ciclos) HP do motor н HP do motor 575 485* 690 575* 870 725* 1160 950* 1750 1425* 3450 2850* 2,2 2,4 2,4 2,4 2,4 ½ ¾ _ _ ½ % 2,2 2,4 2,4 2,2 2,4 -3,0 3,0 2,5 3,0 1 _ 2,2 1 1½ . 1½ 3,8 4,5 4,5 5,2 3,0 3,0 3,8 4,4 3,0 3,8 4,5 4,5 2,4 3,0 3,0 3,8 2,4 2,4 3,0 3,0 2,4 2,4 2,4 3,0 2 2 3 5 7½ 3 5 7½ 6,0 6,8 8,2 9,0 5,2 6,0 6,8 8,2 4,4 5,2 6,0 6,8 10 4,4 4,4 5,2 6,0 3,8 4,4 4,4 4,4 3,0 3,8 4,4 4,4 10 15 20 25 15 20 25 25 6,8 8,2 8,4 10 30 40 50 60 10 10 11 12 9,0 10 10 11 6,8 6,8 8,2 8,0 5,2 6,0 6,8 7,4 30 40 50 60 З 60 14 18 20 22 9,5 12 15 18 75 100 125 150 13 15 18 20 10 10 12 13 8,6 8,6 10,5 10,5 75 100 125 150 100 125 150 200 250 300 22 22 27 22 22 27 13,2 — 200 250 300 22 200 250 300 _ _ _ _ _ Rotação para motores elétricos de 50 ciclos. Através das tabelas de potência das páginas 8 a 15, determine o diâmetro mínimo por tipo de Perfil. Adote, então, o Diâmetro que satisfaça às duas condições. Encontrado o diâmetro menor, determine o diâmetro maior. $D = d. \frac{rpm maior}{rpm menor}$ (mm) ou D = d.i (mm) onde, i = relação de transmissão Gates do Brasil

	5	Fate	.		Diâm	etros d	as Polia	3
dete	rmina-s MG-1-	se o diâ 14.42 d	metro r le junho	menor e o de 19	em funç 72.	cão da p	potência	
net a co	a 3 – tros P orreia:	– Pitch r s Hi-P	nínim Power	ios ree II (en	come n pole	ndado	os s).	
P do otor	575	RP	M do moto	r (50 e 60 ci 1160	clos)	3450	HP do motor	
½ ¾ 1 1½	2,5 3 3 3	2,5 2,5 3 3	2,2 2,4 2,4 2,4 2,4	- 2,2 2,4 2,4	- - 2,2 2,4	 2,2	½ ¾ 1 1½	
2 3 5 7½	3,8 4,5 4,5 5,2	3 3,8 4,5 4,5	3,0 3,0 3,8 4,4	2,4 3,0 3,0 3,8	2,4 2,4 3,0 3,0	2,4 2,4 2,6 3,0	2 3 5 7½	
0 5 0 5	6 6,8 8,2 9	5,2 6 6,8 8,2	4,6 5,4 6,0 6,8	4,4 4,6 5,4 6,0	3,8 4,4 4,6 5,0	3,0 3,8 4,4 4,4	10 15 20 25	
0 0 0 0	10 10 11 12	9,0 10 10 11	6,8 8,2 9,0 10,0	6,8 6,8 8,2 9,0	5,4 6,0 6,8 7,4		30 40 50 60	
5 0 5 0	14 18 20 22	13 15 18 20	10,5 12,5 15 18	10,0 11,0 12,5 13	9,0 10,0 11,5 -		75 100 125 150	7
0 0 0	22 22 27	22 22 27	22 		-		200 250 300	

V. Escolha a correia adequada

Através da Tabela 4 (Correias Super HC) e da Tabela 5 (Correias Hi-Power II) escolha a correia que mais se aproximar do comprimento calculado na 5ª etapa.

Tabela 4 — Comprimento das Correias Super HC.

	3V		5V				8V				
Circunf. Corre externa Super Poleg. – mm Ref.	ia Circunf. HC externa Poleg. – mm	Correia Super HC Ref.	Circunf. externa Poleg. — mm	Correia Super HC Ref.	Circunf. externa Poleg. — mm	Correia Super HC Ref.	Circunf. externa Poleg. — mm	Correia Super HC Ref.	Circunf. externa Poleg. — mm	Correia Super HC Ref.	
25 635 3V2 26 ½ 675 3V2 28 710 3V2 30 760 3V3 31 ½ 800 3V3 33 ½ 850 3V3 35 ½ 900 3V3 37 ½ 955 3V3 40 1015 3V4 42 ½ 1080 3V4	50 71 1805 65 75 1905 80 2030 00 90 85 2160 15 90 2285 35 95 2415 55 100 2540 75 106 2690 00 112 2845 25 118 2995	3V710 3V750 3V800 3V850 3V900 3V1000 3V1000 3V1060 3V1120 3V1180	50 1270 53 1345 56 1420 60 1525 63 1600 67 1700 71 1805 75 1905 80 2030 85 2160	5V500 5V530 5V560 5V600 5V630 5V630 5V670 5V710 5V750 5V800 5V850	140 3555 150 3810 160 4065 170 4320 180 4570 190 4825 200 5080 212 5385 224 5690 236 5995	5V1400 5V1500 5V1600 5V1700 5V1800 5V2000 5V2000 5V2120 5V2240 5V2260	100 2540 106 2690 112 2845 118 2995 125 3175 132 3355 140 3555 150 3810 160 4065 170 4320	8V1000 8V1060 8V1120 8V1180 8V1250 8V1320 8V1400 8V1500 8V1600 8V1700	280 7110 300 7620 315 8000 335 8510 355 9017 375 9525 400 10160 425 10795 450 11430 475 12065	8V2800 8V3000 8V3150 8V3350 8V3550 8V4000 8V4250 8V4500 8V4500	
45 1145 3V4 47 ½ 1205 3V4 50 1270 3V5 53 1345 3V5 56 1420 3V5 60 1525 3V6 63 1600 3V6 67 1700 3V6	50 125 3175 75 132 3355 00 140 3555 30 60 00 30 70	3V1250 3V1320 3V1400	90 2285 95 2415 100 2540 106 2690 112 2845 118 2995 125 3175 132 3355	5V900 5V950 5V1000 5V1060 5V1120 5V1180 5V1250 5V1320	250 6350 265 6730 280 7110 300 7620 315 8000 335 8510 355 9015	5V2500 5V2650 5V2800 5V3000 5V3150 5V3350 5V3550	180 4570 190 4825 200 5080 212 5385 224 5690 	8V1800 8V1900 8V2000 8V2120 8V2240 8V2360 8V2500 8V2650	500 12700 560 14225	8V5000 8V5600	

Gates do Brasil

Correias Gates, fabricadas com Neoprene

Tabela 5 — Comprimento das correias Hi-Power II

F	PERFIL A	λ	F	PERFILE	3	F	PERFIL	0		PERFIL	D		PERFIL	E
Ref.	ÇIRC PIT	UNF. CH	Ref.	CIRC PIT	UNF. CH	Ref.	CIRC	UNF. ICH	Ref.	CIRC	CUNF. ICH	Ref.	CIRC	CUNF. TCH
	Pol.	mm		Pol.	mm		Pol.	mm	1	Pol.	mm	1	Pol.	mm
A-26 27 31 32 33	27.3 28.3 32.3 33.3 34.3	695 720 820 845 870	B-35 37 38 39 42	36.8 38.8 39.8 40.8 43.8	935 985 1010 1035 1115	C-51 55 58 60 63	53.9 57.9 60.9 62.9 65.9	1370 1470 1545 1600 1675	D-120 128 136 144 158	123.3 131.3 139.3 147.3 161.3	3130 3335 3540 3740 4095	180 195 202 210 225	184.5 199.5 206.5 214.5 229.5	4685 5065 5245 5450 5830
35 37 38 41 42	36.3 38.3 39.3 42.3 43.3	920 975 1000 1075 1100	46 48 50 51 52	47.8 49.8 51.8 52.8 53.8	1215 1265 1315 1340 1365	68 71 72 73 75	70.9 73.9 74.9 75.9 77.9	1800 1875 1900 1930 1980	162 173 180 195 210	165.3 176.3 183.3 198.3 213,3	4200 4480 4655 5035 5420	240 270 300 325 330	241.0 271.0 301.0 326.0 331.0	6120 6885 7645 8280 8405
45 46 47 49 50	46.3 47.3 48.3 50.3 51.3	1175 1200 1225 1280 1305	53 55 60 63 64	54.8 56.8 61.8 64.8 65.8	1390 1445 1570 1645 1670	81 85 90 96 100	83.9 87.9 92.9 98.9 102.9	2130 2235 2360 2510 2615	225 240 250 270 300	225.8 240.8 250.8 270.8 300.8	5735 6115 6370 6880 7640	360 390 420 480	361.0 391.0 421.0 481.0	9170 9930 10695 12215
51 53 54 55 57	52.3 54.3 55.3 56.3 58.3	1330 1380 1405 1430 1480	65 68 71 73 75	66.8 69.8 72.8 74.8 76.8	1695 1775 1850 1900 1950	105 112 120 128 136	107.9 114.9 122.9 130.9 138.9	2740 2920 3120 3325 3530	330 360 390 420 480	330.8 360.8 390.8 420.8 480.8	8400 9165 9925 10690 12210			
60 62 64 66 68	61.3 63.3 65.3 67.3 69.3	1555 1610 1660 1710 1760	78 81 85 90 93	79.8 82.8 86.8 91.8 94.8	2025 2105 2205 2330 2410	144 158 162 173 180	146.9 160.9 164.9 175.9 182.9	3730 4085 4190 4470 4645						
69 71 75 80 85	70.3 72.3 76.3 81.3 86.3	1785 1835 1940 2065 2190	95 97 105 112 120	96.8 98.8 106.8 113.8 121.8	2460 2510 2715 2890 3095	195 210 225 240 255	197.9 212.9 225.9 240.9 255.9	5025 5410 5740 6120 6500						
90 96 105 112 120	91.3 97.3 106.3 113.3 121.3	2320 2470 2700 2880 3080	124 128 136 144 158	125.8 129.8 137.8 145.8 159.8	3195 3295 3500 3705 4060	270 300 330 360 390	270.9 300.9 330.9 360.9 390.9	6880 7645 8405 9165 9930						
128 136 144 158 162	129.3 137.3 145.3 159.3 163.3	3285 3485 3690 4045 4150	162 173 180 195 210	163.8 174.8 181.8 196.8 211.8	4160 4440 4620 5000 5380	420	420.9	10690						
173 180-	174.3 181.3	4425 4605	225 240 270 300 330 360	225.3 240.3 270.3 300.3 330.3 360.3	5725 6105 6865 7630 8390 9150					Sóme	ente na co construçõe	nstrução es individ	individu ual e Po	al werBand

VI. Recalcule a distância entre Centros (DC)

Comprimento das Correias Hi-Power II

5

onde, A = Lc - 1,57 (D + d) (mm) Lc = Comprimento da Correia Escolhida (mm) - Estor de correção da Distância entre centros (tabela 6) D = Diâmetro maior (mm) d = Diâmetro menor (mm)

atores de correção				Correias com Ne	Gates, fat oprene	oricadas
abela 6 — Fator de correção da dist	ância entre	centros (h)				
$\begin{array}{ccc} \underline{D-d} & Fator & \underline{D-d} & Fator & \underline{D-d} \\ A & h & A & h & A \end{array}$	Fator <u>D</u> h	<u>−d</u> Fator A h	$\frac{D-d}{A}$	Fator h	$\frac{D-d}{A}$	Fator h
0,00 0,00 0,12 0,06 0,23 0,02 0,01 0,14 0,07 0,25 0,04 0,02 0,16 0,08 0,27 0,06 0,03 0,18 0,09 0,29 0,08 0,04 0,20 0,10 0,30 0,10 0,05 0,21 0,11 0,32	0,12 0,13 0,14 0,15 0,16 0,17	0,34 0,18 0,35 0,19 0,37 0,20 0,39 0,21 0,40 0,22 0,41 0,23	0,43 0,44 0,46 0,47 0,48 0,50	0,24 0,25 0,26 0,27 0,28 0,29	0,51	0,30
hp = (hp _b + hp _a) . Fc. Fg (HP) Ibela 7 tor de correção de comprimento correias Super HC	Tabela Fator de de correi	 potencia basis potência adici fator de Corri Fator de Corri (tabela 9) 8 correção de as Hi-Power 	ca (tabelas lu ional (tabelas eção de Comp reção de Arco comprime II	nto) o (tabelas 7 ttato	e 8)
3V 5V 8V Bef Fator Ref Fator	Perfil A	Perfil B	Perfil C	Perfil	D P	erfil E
Super HC Genetical Correction Super SV250 Genetical SV250 Super SV250 Genetical SV250 Super SV250 Genetical SV250 Super SV250 Genetical SV250 Super SV250 Genetical SV250 Super SV250 Genetical SV250 Genetical SV250 Genetical SV250 Super SV250 Genetical SV250 Genetical SV200 Genetic	Hi-Power a Hi-Power a Correst Correst Corr	in Power def 75 8-35 0,77 76 8-35 0,79 78 8-37 0,78 8-33 0,80 0,79 91 8-38 0,79 92 8-48 0,84 12 8-46 0,81 25 8-45 0,86 85 8-52 0,86 86 8-55 0,88 87 8-60 0,90 9 8-64 0,92	Hipower ii Correcto C-51 0,77 C-55 0,79 C-60 0,81 C-68 0,83 C-71 0,84 C-75 0,86 C-81 0,87 C-85 0,89 C-90 0,90 C-96 0,91 C-100 0,92 C-105 0,93	Hi Power II D-120 D-128 D-128 D-144 D-158 D-162 D-173 D-180 D-195 D-210 D-225 D-240 D-220	de Correction Hi-Four I 0,86 E-190 0,90 E-210 0,92 E-240 0,92 E-240 0,92 E-240 0,92 E-240 0,92 E-240 0,92 E-240 0,94 E-300 0,96 E-360 0,98 E-390 0,996 E-360 0,996 E-364 1,000 E-480 1,02 E-480	r de correçãe 0 0,92 5 0,93 0 0,95 0 0,95 0 0,97 0 0,99 1,01 1,03 1,04 1,06 1,09

250

Correias Gates, fabricadas com Neoprene

Tabela 9 — Fator de correção do Arco Contato

<u>D - d</u> DC	Arco de contato da polia menor (Graus)	Fator "G"
0,00	180	1,00
0,10	174	0,99
0,20	169	0,97
0,30	163	0,96
0,40	157	0,94
0,50	151	0,93
0,60	145	0,91
0,70	139	0,89
0,80	133	0,87
0,90	127	0,85
1,00 1,10 1,20 1,30 1,40 1,50	120 113 106 99 91 83	0,82 0,80 0,77 0,73 0,70 0,70 0,65

VIII - Determine o número necessário de Correias (N)

$N = \frac{HPP}{hr}$	
np	(Arredone o número

IX - Verifique a velocidade Periférica da Correia (V)

V =	D x rpm menor 19100	(m/s)	ou

Obs: Os diâmetros de D e d deverão estar em mm.

A velocidade periférica (V) não deve ultrapassar a : 33 m/s. com correias Super HC e 30 m/s. com correias Hi-Power II.

Gates do Brasil

Correias Gates, fabricadas com Neoprene Tabela 11 Classificação de HP por correia (mm) Para correi RPM do eixo mais rápido Hp básico por correia para diâmetro externo das polias menores, em milímet 180 190 200 210 220 230 240 250 265 280 295 310 325 340 355 370 435 485 575
 12.0
 12.7
 13.4
 14.1

 13.3
 14.0
 14.8
 15.6

 15.4
 16.3
 17.2
 18.1

 18.0
 19.1
 20.1
 21.1

 18.8
 19.9
 21.0
 22.0
 690 725
 100
 103
 104
 105
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 116
 <th116</th>
 <th116</th>
 <th116</th>
 870 950 1160 1425 1750 20.7 22.7 24.6 26.4 28.0 29.6 21.4 23.3 1.37 1.50 1.62 1.75 1.87 2.00 2.12 2.25 2.43 2.54 2.78 3.02 3.26 3.50 3.74 3.98 4.22 4.57 3.63 3.99 4.34 4.69 5.03 5.38 5.73 6.07 6.59 2850 3450 100 200 300
 2.62
 2.80
 2.99
 3.17
 3.35

 4.92
 5.28
 5.63
 5.97
 6.32

 7.10
 7.61
 8.12
 8.63
 9.13
 3.54 3.7 6.67 7.0 9.63 10.1
 3.63
 3.73
 6.74
 6.75
 7.15
 7.10
 7.10
 7.11
 7.12
 1.26
 3.63
 3.63
 6.74
 6.75
 7.15
 7.10
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11
 7.11

 <th 400 500 600 700 800 900 1000 1100 1200 1300
 9.35
 10.3
 11.3
 12.2
 13.1
 14.1
 15.0
 15.9
 17.2
 18.6
 19.9
 21.2
 22.5
 23.8
 25.1
 26.3

 10.2
 11.2
 12.3
 13.3
 14.4
 15.3
 16.3
 17.3
 18.8
 20.3
 21.7
 23.1
 24.5
 25.9
 27.2
 26.5

 11.0
 12.2
 13.3
 14.4
 15.5
 16.7
 17.3
 18.8
 20.3
 21.7
 23.1
 24.5
 25.9
 27.2
 26.5
 16.0
 17.8
 18.7
 20.3
 21.4
 22.5
 23.8
 25.9
 27.2
 26.5
 26.4
 27.9
 23.3
 17.3
 18.8
 20.3
 21.4
 23.4
 24.5
 26.4
 27.9
 23.3
 27.1
 18.3
 14.2
 15.4
 16.6
 17.8
 18.7
 20.1
 21.8
 23.4
 25.1
 26.4
 27.9
 23.0
 27.1
 28.6
 28.9
 27.1
 28.6
 28.3
 29.7
 31.2< 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
 166
 183
 200
 216
 232
 248
 263
 278
 293
 319
 333
 357
 37.4
 389

 17.2
 190
 20.7
 22.4
 24.6
 26.3
 27.8
 29.9
 319
 33.7
 37.4
 38.9

 17.2
 190
 20.7
 22.4
 24.6
 26.6
 27.1
 28.6
 30.8
 32.6
 34.7
 35.5
 38.1

 17.7
 19.5
 12.3
 23.0
 24.7
 26.3
 27.9
 34.9
 35.5
 34.1
 33.5
 34.3
 31.5
 35.4
 37.1
 38.2
 34.7
 35.4
 37.1
 38.2
 34.7
 35.0
 32.4
 32.1
 34.2
 34.2
 36.0
 32.2
 34.7
 36.0
 37.7
 34.7
 36.0
 37.7
 37.4
 38.9
 37.7
 37.4
 38.2
 36.0
 37.7
 37.4
 38.9
 37.7
 37.4
 38.9
 37.7
 37.4
 38.9
 37.7
 37.4
 38
 16.7
 20.6
 22.4
 22.3
 27.6
 23.1
 30.6
 32.7

 19.2
 21.1
 22.9
 -24.7
 26.4
 28.1
 29.6
 31.1
 33.2

 19.6
 21.5
 23.4
 25.2
 26.9
 28.5
 30.1
 31.6
 33.6

 19.9
 21.9
 23.8
 25.6
 27.3
 28.9
 30.5
 31.9

 20.3
 22.2
 24.1
 25.9
 27.6
 23.2
 30.7

 20.5
 22.5
 24.4
 26.2
 27.9
 39.5
 31.9
 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300
 20.8
 22.8
 24.7
 26.5
 28.1
 29.6

 21.0
 23.0
 24.9
 26.6
 28.2
 21.2
 23.0
 24.9
 26.6
 28.2
 21.2
 23.3
 23.3
 25.1
 21.4
 23.3
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25.1
 25 3400 3500 3600 3700 21.4 23.4 21.4 23.3 21.4 21.3 Para outras combinaçõe RPM-Diâmetro não figu tabela, consulte a Gates Todas as polias devem receber um balanceamento estático para velocidades (do eixo ou operação), contudo, as correias funcionarão em segurança em velocidades até 33m/s. Onde as vibrações fore problemas, recomendamos que as polias sejam balanceadas dinamicamente.

Gates do Brasil

Gates do Brasil

4	Ja	ites.			Cla: Sup	ssific per l	caçã HC (o do 5V)	9 DHP	
as Super	HC	e Pow	/erBan	d Si	upe	r H	Ср	erfi	I 5V	
	RPM	HP adie	cional por cr	orreia. o	ara rel	acão d	le velo	cidade		
385 400	do eixò mais rápido	1.00 1.02 a a 1.01 1.05	1.06 1.12 a a 1.11 1.18	1.19 a 1.26	1.27 a 1.38	1.39 a 1.57	1.58 a 1.94	1.95 a 3.38	3.39 em diante	
14.8 15.5 16.3 17.1 18.9 19.8 22.1 23.1 23.1 24.1	435 485 575 690 725	0.00 0.04 0.00 0.05 0.00 0.06 0.00 0.07 0.00 0.07	0.12 0.20 0.13 0.22 0.15 0.27 0.18 0.32 0.19 0.34	0.27 0.31 0.36 0.44 0.46	0.33 0.37 0.44 0.53 0.55	0.39 0.43 0.51 0.62 0.65	0.44 0.49 0.58 0.70 0.73	0.48 0.53 0.63 0.76 0.80	0.51 0.56 0.67 0.80 0.84	
26.8 28.0 28.7 30.0 33.3 34.7 38.0 39.4	870 950 1160 1425 1750	0.00 0.08 0.00 0.09 0.00 0.11 0.00 0.14 0.00 0.17	0.23 0.40 0.25 0.44 0.31 0.54 0.38 0.66 0.47 0.81	0.55 0.60 0.73 0.90 1.10	0.67 0.73 0.89 1.09 1.34	0.78 0.85 1.04 1.28 1.57	0.88 0.96 1.17 1.44 1.76	0.96 1.04 1.27 1.56 1.92	1.01 1.10 1.35 1.66 2.03	
3.90 4.08 7.36 7.70 10.6 11.1	2850 3450 100 200 300	0.00 0.28 0.00 0.34 0.00 0.01 0.00 0.02 0.00 0.03	0.76 1.32 0.92 1.60 0.03 0.05 0.05 0.09 0.08 0.14	1.80 2.18 0.06 0.13 0.19	2.18 2.64 0.08 0.15 0.23	2.55 3.09 0.09 0.18 0.27	2.87 3.48 0.10 0.20 0.30	3.13 3.79 0.11 0.22 0.33	3.31 4.01 0.12 0.23 0.35	
13.8 14.4 16.8 17.5 19.7 20.6 22.4 23.4 25.0 26.2	400 500 600 700 800	0.00 0.04 0.00 0.05 0.00 0.06 0.00 0.07 0.00 0.08	0.11 0.19 0.13 0.23 0.16 0.28 0.19 0.32 0.21 0.37	0.25 0.32 0.38 0.44 0.50	0.31 0.38 0.46 0.54 0.61	0.36 0.45 0.54 0.63 0.72	0.40 0.50 0.60 0.71 0.81	0.44 0.55 0.66 0.77 0.88	0.47 0.58 0.70 0.81 0.93	
27.5 28.7 29.9 31.2 32.1 33.4 34.1 35.5 36.0 37.4	900 1000 1100 1200 1300	0.00 0.09 0.00 0.10 0.00 0.11 0.00 0.12 0.00 0.13	0.24 0.42 0.27 0.46 0.29 0.51 0.32 0.56 0.35 0.60	0.57 0.63 0.69 0.76 0.82	0.69 0.76 0.84 0.92 0.99	0.81 0.90 0.98 1.07 1.16	0.91 1.01 1.11 1.21 1.31	0.99 1.10 1.21 1.32 1.43	1.05 1.16 1.28 1.40 1.51	
37.6 39.0 39.1 40.5 40.4 41.7 41.5	1400 1500 1600 1700 1800	0.00 0.14 0.00 0.15 0.00 0.16 0.00 0.17 0.00 0.18	0.37 0.65 0.40 0.70 0.43 0.74 0.45 0.79 0.48 0.83	0.88 0.95 1.01 1.07 1.14	1.07 1.15 1.22 1.30 1.38	1.25 1.34 1.43 1.52 1.61	1.41 1.51 1.61 1.71 1.81	1.54 1.65 1.76 1.87 1.98	1.63 1.74 1.86 1.98 2.09	
	1900 2000 2100 2200 2300	0.00 0.19 0.00 0.20 0.00 0.20 0.00 0.21 0.00 0.22	0.51 0.88 0.53 0.93 0.56 0.97 0.58 1.02 0.61 1.07	1.20 1.26 1.32 1.39 1.45	1.45 1.53 1.61 1.68 1.76	1.70 1.79 1.88 1.97 2.06	1.91 2.02 2.12 2.22 2.32	2.09 2.20 2.31 2.42 2.52	2.21 2.33 2.44 2.56 2.67	
	2400 2500 2600 2700 2800	0.00 0.23 0.00 0.24 0.00 0.25 0.00 0.26 0.00 0.27	0.64 1.11 0.66 1.16 0.69 1.20 0.72 1.25 0.74 1.30	1.51 1.58 1.64 1.70 1.77	1.83 1.91 1.99 2.06 2.14	2.15 2.24 2.33 2.42 2.51	2.42 2.52 2.62 2.72 2.82	2.63 2.74 2.85 2.96 3.07	2.79 2.91 3.02 3.14 3.26	
	2900 3000 3100 3200 3300	0.00 0.28 0.00 0.29 0.00 0.30 0.00 0.31 0.00 0.32	0.77 1.34 0.80 1.39 0.82 1.44 0.85 1.48 0.88 1.53	1.83 1.89 1.96 2.02 2.08	2.22 2.29 2.37 2.45 2.52	2.60 2.69 2.78 2.87 2.95	2.92 3.02 3.12 3.22 3.33	3.18 3.29 3.40 3.51 3.62	3.37 3.49 3.60 3.72 3.84	
s de adas nesta	3400 3500 3600 3700	0.00 0.33 0.00 0.34 0.00 0.35 0.00 0.36	0.90 1.58 0.93 1.62 0.96 1.67 0.98 1.71	2.14 2.21 2.27 2.33	2.60 2.68 2.75 2.83	3.04 3.13 3.22 3.31	3.43 3.53 3.63 3.73	3.73 3.84 3.95 4.06	3.95 4.07 4.19 4.30	

dade da correia acima de 33m/s , consulte a Gates.

Correias Gates, fabricadas com Neoprene Tabela 13 Classificação de HP por correia (mm) Para correias h RPM do eixo mais rápido HP básico por correia para diâmetro Pitch das polias menores, em milíme 65 70 75 80 85 90 95 100 105 110 115 120 125 140 150 950 1160 1425 1750 2850
 0.71
 1.25
 1.71
 2.11
 2.62
 3.07
 3.33
 3.33
 4.75
 5.15
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 5.34
 <th 3450 200 400 600 800 8.09 0.94 1.72 2.43
 0.57
 0.76
 0.96
 1.15
 1.34
 1.53
 1.72
 1.91
 2.10
 2.28
 2.46
 2.65
 2.83
 3.37
 3.72
 0.62
 0.65
 0.86
 1.31
 1.53
 1.76
 1.98
 2.40
 2.45
 2.45
 2.45
 2.45
 2.45
 2.45
 2.45
 2.43
 3.37
 3.72
 0.62
 0.65
 0.83
 1.31
 1.53
 1.76
 1.98
 2.40
 2.42
 2.45
 2.45
 2.45
 2.45
 3.39
 3.37
 3.72
 0.67
 0.31
 1.91
 3.51
 1.76
 1.98
 2.40
 2.42
 2.45
 2.45
 2.45
 3.39
 3.37
 3.71
 4.66
 6.71
 1.91
 1.91
 1.91
 1.91
 2.10
 2.47
 2.72
 2.45
 3.21
 3.45
 3.64
 3.49
 4.86
 5.37
 4.36
 2.37
 3.45
 3.64
 3.44
 5.49
 3.46
 1.71
 1.00
 1.30
 1.59
 1.87
 2.36
 <th 1000 1200 1400 1600 1800
 0.74
 1.06
 1.33
 1.71
 2.03
 2.34
 2.67
 2.96
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.26
 3.28
 3.23
 4.31
 4.37
 5.09
 6.66
 6.7
 7.0
 1.86
 1.26
 1.29
 2.23
 3.34
 3.47
 3.24
 2.40
 5.27
 5.53
 5.68
 7.33
 8.077
 1.24
 1.70
 2.16
 2.00
 3.47
 3.89
 4.03
 4.47
 5.00
 5.45
 5.28
 5.67
 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

Todas as polias devem receber um balanceamento estático para velocidades (do eixo ou operação), contudo, as correias funcionarão em seguranca em velocidades até 30m/s. Onde as vibrações forem problemas, recomendamos que as polias sejam balanceadas dinamicamente...

 0.23
 0.91
 1.55
 2.17
 2.75
 3.00
 8.16
 4.29
 4.73
 5.12
 5.48

 0.14
 0.82
 1.48
 2.10
 2.68
 3.22
 3.73
 4.19
 4.61
 4.99

 0.30
 0.73
 1.39
 2.01
 2.59
 3.13
 3.62
 4.07
 4.47
 4.22
 4.73
 5.12
 5.48

 0.30
 0.73
 1.39
 2.01
 2.59
 3.13
 3.62
 4.07
 4.47
 4.22
 4.73
 5.12
 5.48

 0.63
 1.29
 1.91
 2.48
 3.01
 3.49
 3.22
 4.30
 0.51
 1.7
 1.92
 2.88
 3.47
 4.37
 4.30
 4.37
 4.30
 4.30
 4.31
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.33
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32
 4.32

0.39 1.05 1.66 2.22 2.72 3.16 0.25 0.91 1.51 2.06 2.54 2.96 0.11 0.76 1.35 1.88 2.34 0.59 1.17 1.68 0.41 0.98 1.46

Gates do Brasil

Gates do Brasil

	Fates.	11 Classificação do HP Hi-Power II (A)
Para correias Hi-Power	II e PowerBand Hi-Po	ower II perfil "A"
menores, em milímetros	RPM HP adicional por correia, do 1.00 1.02 1.04 1.06 1.09 a </td <td>para relação de velocidade 1.13 1.17 1.23 1.31 1.49 a a a a em 1.15 1.22 1.20 1.48 distri</td>	para relação de velocidade 1.13 1.17 1.23 1.31 1.49 a a a a em 1.15 1.22 1.20 1.48 distri
54 2.71 3.23 3.57 4.07 4.56 4.89 98 3.19 3.79 4.19 4.78 5.36 5.74 4.9 3.74 4.45 4.92 5.61 6.28 6.71 0.7 4.35 5.19 5.73 6.51 7.27 7.76 54 591 6.99 7.65 8.56 9.89 9.83	Papeo 1.01 1.03 1.03 1.04 1.12 950 0.00 0.02 0.04 0.06 0.08 1160 0.00 0.02 0.05 0.07 0.10 1425 0.00 0.03 0.06 0.09 0.12 1750 0.00 0.04 0.07 0.11 0.14 2850 0.00 0.04 0.07 0.11 0.14	1.10 1.22 1.30 1.46 duame 0.10 0.12 0.14 0.16 0.18 0.12 0.14 0.17 0.19 0.22 0.15 0.18 0.21 0.24 0.27 0.18 0.22 0.25 0.29 0.33 0.29 0.35 0.41 0.47 0.53
99 6.38 7.46 8.09 8.89 168 0.73 0.86 0.94 1.07 1.19 1.28 24 1.32 1.56 1.72 1.96 2.19 2.35 74 1.86 2.20 2.43 2.77 3.11 3.33 21 2.36 2.80 3.10 3.53 3.96 4.24	3450 0.00 0.07 0.14 0.21 0.22 200 0.00 0.00 0.01 0.01 0.02 400 0.00 0.01 0.02 0.02 0.03 600 0.00 0.01 0.02 0.04 0.05 800 0.00 0.02 0.03 0.05 0.07	
165 2.83 3.37 3.72 4.24 4.76 5.10 0.66 3.27 3.90 4.31 4.91 5.50 5.89 4.5 3.69 4.39 4.86 5.53 6.19 6.62 81 4.08 4.86 5.37 6.11 6.83 7.29 1.5 4.44 5.29 5.84 6.64 7.41 7.90	1000 0.00 0.02 0.04 0.06 0.05 1200 0.00 0.02 0.05 0.07 0.10 1400 0.00 0.03 0.66 0.09 0.11 1600 0.00 0.03 0.06 0.09 0.11 1800 0.00 0.03 0.07 0.11 0.13	0.10 0.12 0.14 0.17 0.19 0.12 0.15 0.17 0.20 0.22 0.14 0.17 0.20 0.23 0.26 0.17 0.20 0.23 0.26 0.30 0.19 0.22 0.26 0.30 0.34
4.7 4.78 5.69 6.28 7.12 7.93 8.44 76 5.09 6.06 6.67 7.55 8.38 8.90 0.3 5.38 6.39 7.03 7.93 8.77 9.28 2.7 5.63 6.68 7.33 8.25 9.08 9.58 4.9 5.66 6.93 7.59 8.51 9.32 9.80	2000 0.00 0.04 0.08 0.12 0.11 2200 0.00 0.05 0.09 0.14 0.13 2400 0.00 0.05 0.10 0.15 0.22 2600 0.00 0.05 0.10 0.15 0.22 2800 0.00 0.05 0.11 0.16 0.22 2800 0.00 0.06 0.12 0.17 0.23	0.21 0.25 0.29 0.33 0.37 8 0.23 0.27 0.32 0.36 0.41 0.25 0.30 0.35 0.40 0.45 0.27 0.32 0.38 0.43 0.48 0.29 0.35 0.41 0.46 0.52
67 6.06 7.14 7.81 8.70 9.47 9.92 83 6.22 7.31 7.97 8.83 9.55 9.94 96 6.36 7.44 8.07 8.89 9.55 9.94 1.06 6.45 7.51 8.12 8.87 1.13 6.52 7.54 8.11	3000 0.00 0.06 0.12 0.19 0.22 3200 0.00 0.07 0.13 0.20 0.24 3400 0.00 0.07 0.14 0.21 0.22 3600 0.00 0.07 0.14 0.21 0.22 3600 0.00 0.07 0.15 0.22 0.30 3800 0.00 0.08 0.16 0.24 0.31	0.31 0.37 0.43 0.50 0.56 0.33 0.40 0.46 0.53 0.60 0.37 0.42 0.49 0.56 0.63 0.37 0.45 0.50 0.61 0.37 0.45 0.52 0.60 0.67 0.39 0.47 0.55 0.63 0.71
16 6.54 7.52 8.04 16 6.53 7.45 113 6.47 .05 6.38 .94	4000 0.00 0.08 0.17 0.25 0.33 4200 0.00 0.09 0.17 0.26 0.33 4400 0.00 0.09 0.18 0.27 0.33 4600 0.00 0.10 0.19 0.29 0.38 4800 0.00 0.10 0.20 0.30 0.40	8 0.41 0.50 0.58 0.66 0.74 5 0.43 0.52 0.61 0.69 0.78 5 0.45 0.55 0.64 0.73 0.82 0 0.48 0.57 0.67 0.76 0.86 0 0.50 0.60 0.69 0.79 0.89
	5000 0.00 0.10 0.21 0.31 0.41 5200 0.00 0.11 0.21 0.32 0.4 5400 0.00 0.11 0.21 0.32 0.4 5600 0.00 0.11 0.22 0.33 0.4 5600 0.00 0.12 0.23 0.35 0.4 5800 0.00 0.12 0.24 0.36 0.44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Para outras combinações de RPM-Diâmetro não figuradas nesta tabela, consulte a Gates.	6000 0.00 0.12 0.25 0.37 0.56 6200 0.00 0.13 0.26 0.38 0.51 6400 0.00 0.13 0.26 0.40 0.55 6600 0.00 0.13 0.26 0.40 0.55 6600 0.00 0.14 0.27 0.41 0.55 6800 0.00 0.14 0.28 0.42 0.54	0 0.62 0.74 0.87 0.99 1.12 1 0.64 0.77 0.90 1.03 1.15 3 0.66 0.79 0.93 1.06 1.19 5 0.68 0.82 0.96 1.09 1.23 5 0.70 0.84 0.98 1.13 1.27

/elocidade da correia acima de 30m/s, consulte a Gates

RPM do exo mais	180	190	HP ba	ásico 210	220	orreia 230	para	diâme 250	etro P	itch d	as po 280	lias m	anon	es, en	n millír 340
575	4.83	5.47	6.09	6.72	7.33	7.95	8.56	9.17	9.77	10.4	11.0	11.6	12.1	13.3	14.5
690	5.53	6.27	7.00	7.73	8.45	9.17	9.88	10.6	11.3	12.0	12.7	13.4	14.0	15.4	16.7
725	5.73	6.51	7.27	8.03	8.78	9.53	10.3	11.0	11.7	12.5	13.2	13.9	14.6	16.0	17.3
870	6.52	7.42	8.31	9.19	10.1	10.9	11.8	12.6	13.5	14.3	15.1	15.9	16.7	18.3	19.8
1160	7.86	8.98	10.1	11.2	12.3	13.3	14.4	15.4	16.4	17.4	18.4	19.4	20.3	22.1	23.9
1425	8.81	10.1	11.4	12.6	13.9	15.1	16.2	17.4	18.5	19.6	20.7	21.7	22.7	24.6	26.4
1750	9.60	11.1	12.5	13.9	15.2	16.5	17.8	19.0	20.1	21.3	22.3	23.3	24.3	26.0	27.5
100	1.18	1.31	1.44	1.57	1.70	1.83	1.95	2.08	2.21	2.33	2.46	2.59	2.71	2.96	3.21
200	2.10	2.35	2.59	2.83	3.07	3.31	3.55	3.79	4.03	4.27	4.50	4.74	4.97	5.44	5.90
300	2.92	3.27	3.62	3.97	4.32	4.67	5.01	5.35	5.70	6.04	6.38	6.72	7.05	7.72	8.39
400	3.66	4.12	4.57	5.03	5.48	5.92	6.37	6.81	7.25	7.69	8.13	8.57	9.00	9.86	10.7
500	4.35	4.91	5.46	6.01	6.56	7.11	7.65	8.19	8.72	9.25	9.78	10.3	10.8	11.9	12.9
600	4.99	5.65	6.30	6.94	7.58	8.22	8.85	9.48	10.1	10.7	11.3	12.0	12.6	13.8	15.0
700	5.59	6.34	7.08	7.82	8.55	9.27	9.99	10.7	11.4	12.1	12.8	13.5	14.2	15.5	16.9
800	6.15	6.99	7.82	8.64	9.46	10.3	11.1	11.9	12.6	13.4	14.2	15.0	15.7	17.2	18.7
900	6.67	7.60	8.51	9.41	10.3	11.2	12.1	12.9	13.8	14.6	15.5	16.3	17.1	18.7	20.3
1000	7.16	8.16	9.16	10.1	11.1	12.1	13.0	14.0	14.9	15.8	16.7	17.6	18.5	20.2	21.8
1100	7.61	8.69	9.76	10.8	11.9	12.9	13.9	14.9	15.9	16.8	17.8	18.7	19.6	21.4	23.2
1200	8.02	9.17	10.3	11.4	12.5	13.6	14.7	15.7	16.8	17.8	18.8	19.8	20.7	22.6	24.4
1300	8.39	9.62	10.8	12.0	13.2	14.3	15.4	16.5	17.6	18.7	19.7	20.7	21.7	23.6	25.4
1400	8.73	10.0	11.3	12.5	13.7	14.9	16.1	17.2	18.3	19.4	20.5	21.5	22.5	24.4	26.2
1500	9.03	10.4	11.7	13.0	14.2	15.5	16.7	17.8	19.0	20.1	21.2	22.2	23.2	25.1	26.8
1600	9.29	10.7	12.1	13.4	14.7	16.0	17.2	18.4	19.5	20.6	21.7	22.8	23.7	25.6	27.3
1700	9.51	11.0	12.4	13.7	15.1	16.4	17.6	18.8	20.0	21.1	22.1	23.2	24.1	25.9	27.5
1800 1900 2000 2100 2200	9.69 9.82 9.92 9.97 9.97	11.2 11.3 11.5 11.5 11.6	12.6 12.8 13.0 13.1 13.1	14.0 14.2 14.4 14.5 14.5	15.4 15.6 15.8 15.9 15.9	16.7 16.9 17.1 17.2 17.2	17.9 18.2 18.3 18.4 18.4	19.1 19.4 19.5 19.5 19.5	20.3 20.5 20.6 20.6 20.6 20.5	21.4 21.6 21.7 21.6 21.4	22.4 22.6 22.6 22.5	23.4 23.6 23.5	24.4 24.4 24.4	26.1 26.0	
2300 2400 2500 2600 2700	9.92 9.83 9.68 9.49 9.24	11.5 11.4 11.3 11.1 10.8	13.0 12.9 12.8 12.5 12.2	14.5 14.3 14.1 13.9 13.5	15.8 15.7 15.4 15.1 14.7	17.1 16.9 16.6 16.2	18.2 18.0 17.6	19.3 18.9	20.2						
2800 2900 3000 3100 3200	8.94 8.58 8.16 7.68 7.14	10.5 10.1 9.58 9.05	11.8 11.4	13.1								Par RP tab	a out M-Dia ela, c	ras co àmetro consul	ombin o não te a C

Gates do Brasil

Gates do Brasil

										13	3
6	Ja	tes.				Cla Hi-	ssifi Pow	caçâ /er II	io d I (C)	o HP	,
Hi-Power	ll e	Power	rBan	d H	li-P	ow	er I	l pe	erfil	"C"	,
is 380 400	RPM 60 80 83 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 64 64 64 66 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 6	HP ad 1.00 1.02 a a 1.01 1.03	1.04 a 1.05	1.06 a 1.08	eia, p 1.09 a 1.12	ara rel 1.13 a 1.16	ação d 1.17 a 1.22	le velo 1.23 a 1.30	cidade 1.31 a 1.48	1.49 em diante	
16.7 17.8 19.3 20.5 20.0 21.3 22.8 24.2 24.2 25.7	575 690 725 870 950	0.00 0.07 0.00 0.09 0.00 0.09 0.00 0.11 0.00 0.12	0.14 0.17 0.18 0.22 0.24	0.21 0.26 0.27 0.32 0.35	0.29 0.34 0.36 0.43 0.47	0.36 0.43 0.45 0.54 0.59	0.43 0.51 0.54 0.65 0.71	0.50 0.60 0.63 0.76 0.83	0.57 0.69 0.72 0.86 0.94	0.64 0.77 0.81 0.97 1.06	
27.2 28.7 29.5 30.9 5 3.70 3.94 5 6.82 7.28	1160 1425 1750 100 200	0.00 0.14 0.00 0.18 0.00 0.22 0.00 0.01 0.00 0.02	0.29 0.35 0.43 0.02 0.05	0.43 0.53 0.65 0.04 0.07	0.58 0.71 0.87 0.05 0.10	0.72 0.88 1.09 0.06 0.12	0.86 1.06 1.30 0.07 0.15	1.01 1.24 1.52 0.09 0.17	1.15 1.41 1.74 0.10 0.20	1.30 1.59 1.95 0.11 0.22	
5 9.70 10.4 12.4 13.2 14.9 15.9 17.3 18.4 19.5 20.7	300 400 500 600 700	0.00 0.04 0.00 0.05 0.00 0.06 0.00 0.07 0.00 0.09	0.07 0.10 0.12 0.15 0.17	0.11 0.15 0.19 0.22 0.26	0.15 0.20 0.25 0.30 0.35	0.19 0.25 0.31 0.37 0.43	0.22 0.30 0.37 0.45 0.52	0.26 0.35 0.43 0.52 0.61	0.30 0.40 0.50 0.60 0.70	0.34 0.45 0.56 0.67 0.78	
21.5 22.9 23.3 24.8 25.0 26.5 26.4 27.9 27.6 29.1	800 900 1000 1100 1200	0.00 0.10 0.00 0.11 0.00 0.12 0.00 0.14 0.00 0.15	0.20 0.22 0.25 0.27 0.30	0.30 0.33 0.37 0.41 0.45	0.40 0.45 0.50 0.55 0.60	0.50 0.56 0.62 0.68 0.74	0.60 0.67 0.74 0.82 0.89	0.69 0.78 0.87 0.96 1.04	0.79 0.89 0.99 1.09 1.19	0.89 1.01 1.12 1.23 1.34	
28.6 30.1 29.4 30.7 29.9 31.1 30.1	1300 1400 1500 1600 1700	0.00 0.16 0.00 0.17 0.00 0.19 0.00 0.20 0.00 0.21	0.32 0.35 0.37 0.40 0.42	0.48 0.52 0.56 0.60 0.63	0.64 0.69 0.74 0.79 0.84	0.81 0.87 0.93 0.99 1.05	0.97 1.04 1.12 1.19 1.27	1.13 1.22 1.30 1.39 1.48	1.29 1.39 1.49 1.59 1.69	1.45 1.56 1.68 1.79 1.90	
	1800 1900 2000 2100 2200	0.00 0.22 0.00 0.24 0.00 0.25 0.00 0.26 0.00 0.27	0.45 0.47 0.50 0.52 0.55	0.67 0.71 0.74 0.78 0.82	0.89 0.94 0.99 1.04 1.09	1.12 1.18 1.24 1.30 1.36	1.34 1.41 1.49 1.56 1.64	1.56 1.65 1.74 1.82 1.91	1.79 1.89 1.99 2.09 2.18	2.01 2.12 2.23 2.35 2.46	
	2300 2400 2500 2600 2700	0.00 0.29 0.00 0.30 0.00 0.31 0.00 0.32 0.00 0.34	0.57 0.60 0.62 0.64 0.67	0.86 0.89 0.93 0.97 1.00	1.14 1.19 1.24 1.29 1.34	1.43 1.49 1.55 1.61 1.67	1.71 1.79 1.86 1.94 2.01	2.00 2.08 2.17 2.26 2.35	2.28 2.38 2.48 2.58 2.68	2.57 2.68 2.79 2.90 3.02	
s de adas nesta	2800 2900 3000 3100 3200	0.00 0.35 0.00 0.36 0.00 0.37 0.00 0.39 0.00 0.40	0.69 0.72 0.74 0.77 0.79	1.04 1.08 1.12 1.15 1.19	1.39 1.44 1.49 1.54 1.59	1.74 1.80 1.86 1.92 1.98	2.08 2.16 2.23 2.31 2.38	2.43 2.52 2.61 2.69 2.78	2.78 2.88 2.98 3.08 3.18	3.13 3.24 3.35 3.46 3.57	
	3300	0.00 0.41	0.82	1.23	1.64	2.05	2.46	2.87	3.28	3.69	

o), prem

Velocida cidade da correia acima de 30m/s, consulte a Gates

Todas as polias devem receber um balanceamento estático para velocidades (do eixo ou operacão), contudo, as correias funcionarão em segurança em velocidades até 30m/s. Onde as vibrações forem problemas, recomendamos que as polias sejam balanceadas dinamicamente.

Velocidade da correia acima de 30m/s, consulte a Gates

Gates do Brasil

Correias Gates, fabricadas com Neoprene Tabela 17 Classificação de HP por correia (mm) Para correias Hi-Power II e PowerBand Hi-Power II perfil "E" RPM do exp mais rápido HP básico por correia para diâmetro Pitch das polias menores, em milíme 455 475 500 525 550 575 600 625 650 675 700 725 750 775 800 82
 27.2
 29.3
 32.0
 34.6
 37.2
 39.7
 42.2
 44.7
 47.1
 49.5
 51.9
 54.2
 56.4
 58.7
 60.9
 63.2

 29.4
 31.7
 34.6
 37.4
 40.2
 42.9
 45.6
 48.2
 50.8
 53.3
 55.8
 58.2
 60.6
 62.9
 65.2
 67

 32.9
 35.5
 38.7
 41.9
 44.9
 47.9
 50.9
 53.7
 56.5
 59.2
 61.8
 68.8
 63.1
 71.6
 71.9
 40.7
 60.9
 63.7
 66.4
 61.8
 65.1
 71.6
 71.9
 74.0
 76.0
 77
 31.7
 40.6
 44.2
 47.7
 51.0
 54.2
 57.3
 60.2
 63.0
 65.7
 68.2
 70.6
 72.7
 74.8
 76.6
 72

 37.7
 40.6
 44.2
 47.7
 51.0
 54.2
 57.3
 60.2
 63.0
 65.7
 68.2
 70.6
 72.7
 74.8
 76.6
 78
 435 485 575 690 725
 37.7
 40.5
 44.2
 47.7
 51.0
 54.2
 57.3
 60.2
 53.0
 65.4
 67.6
 69.5
 74.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 76.8
 <th 870 50 100 150 200
 14.8
 15.5
 17.3
 18.7
 20.0
 21.4
 25.3
 20.0
 0.01
 23.4
 30.0
 31.4
 31.7
 19.1
 20.7
 22.4
 24.1
 25.8
 27.4
 29.0
 30.6
 32.3
 33.9
 35.4
 37.0
 38.6

 20.5
 22.1
 24.0
 26.0
 27.9
 29.9
 31.8
 37.7
 55.3
 33.9
 35.4
 37.0
 38.6

 20.5
 22.1
 24.0
 26.0
 27.9
 29.9
 31.8
 37.7
 35.7
 37.4
 39.2
 41.0
 42.9
 44.6

 21.7
 24.9
 27.1
 29.3
 31.5
 37.7
 35.9
 38.0
 40.1
 42.2
 46.3
 48.3
 50.3

 25.5
 27.6
 30.0
 32.5
 37.3
 37.3
 35.9
 38.0
 40.1
 42.2
 46.4
 46.5
 48.9
 50.3
 52.5
 40.0
 32.3
 39.3
 33.3
 35.4
 50.3
 52.5
 57.6
 250 300 350 400 450 52.2 54 57.5 59 62.2 64
 450
 27.5
 30.1
 32.6
 32.8
 30.1
 32.6
 32.8
 40.6
 40.5
 40.6
 30.6
 32.8
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.6
 50.7
 50.3
 52.8
 55.6
 57.7
 60.3
 52.8
 52.6
 56.6
 63.2
 55.7
 50.3
 52.8
 55.6
 56.7
 50.3
 52.8
 56.6
 63.2
 55.7
 50.3
 52.8
 56.6
 63.2
 55.7
 56.3
 52.8
 56.6
 52.8
 56.7
 50.3
 52.8
 56.6
 63.2
 55.7
 56.3
 56.8
 57.7
 50.3
 56.8
 57.7
 50.3
 56.8
 57.7
 57.7
 77.4
 57.7
 77.4
 57.7
 77.4
 57.7
 77.4
 57.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7
 77.7

 37.0
 37.3
 45.3
 45.3
 59.4
 67.2
 64.3
 61.5
 69.9
 72.2
 74.3
 76.3
 73.8
 73.4
 73.4
 75.5
 69.9
 72.2
 74.3
 76.3
 73.8
 73.4
 73.2
 75.1
 76.8
 73.9
 75.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.3
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 75.1
 76.8
 77.1
 76.8
 76.4
 77.4
 75.1
 76.8
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 76.4
 <th 750 800 850 900 950

Todas as polias devem receber um balanceamento estático para velocidades (do eixo ou operação), contudo, as correias funcionarão em segurança em velocidades até 30m/s. Onde as vibrações forem problemas, recomendamos que as polias sejam balanceadas dinamicamente.

 Job
 42.0
 45.1
 48.7
 52.0
 55.7
 61.0

 1000
 42.0
 45.1
 48.7
 52.0
 55.0
 57.7
 61.0

 1050
 42.2
 45.2
 48.6
 51.8
 54.5
 57.0
 61.0

 1100
 42.0
 44.9
 48.3
 51.2
 53.7
 1115
 41.7
 44.7
 45.4
 65.03
 1200
 41.1
 43.7
 46.6
 50.3
 1200
 41.1
 43.7
 46.6
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 41.1
 43.7
 46.6
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2
 120.2

1250 **40.2 42.6** 1300 **39.1**

Gates do Brasil

15

Classificação do HP

Hi Power II (E)

as menores, em milímetros	RPN	, ,	HP adi	cional	por co	rreia, p	para re	lação	de velo	cidade	2
725 750 775 800 825 850	900 naid rápid	1.00 a 1.01	1.02 a 1.03	1.04 a 1.06	1.07 a 1.08	1.09 a 1.12	1.13 a 1.16	1.17 a 1.22	1.23 a 1.32	1.33 a 1.50	1.51 em diante
54.2 56.4 58.7 60.9 63.0 65.1 58.2 60.6 62.9 65.2 67.4 69.6 54.3 66.8 69.1 71.4 73.6 75.7 59.6 71.9 74.0 76.0 77.9 79.6 70.6 72.7 74.8 76.6 78.3	69.2 43 73.7 48 79.6 57 69 72	5 0.00 5 0.00 5 0.00 0 0.00 5 0.00 5 0.00	0.28 0.31 0.37 0.44 0.46	0.56 0.63 0.74 0.89 0.94	0.85 0.95 1.13 1.35 1.42	1.14 1.28 1.51 1.81 1.91	1.45 1.61 1.91 2.29 2.41	1.76 1.96 2.32 2.79 2.93	2.08 2.32 2.75 3.30 3.47	2.43 2.71 3.21 3.85 4.05	2.82 3.15 3.73 4.48 4.70
8.79 9.18 9.56 9.94 10.3 10.7 16.2 16.9 17.6 18.4 19.1 19.8 13.0 24.1 25.1 26.1 27.1 28.1 29.4 30.8 32.1 33.4 34.7 35.9	870 11.5 5 21.2 100 30.2 150 38.5 200	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	0.56 0.03 0.06 0.10 0.13	1.12 0.06 0.13 0.19 0.26	1.70 0.10 0.20 0.29 0.39	2.29 0.13 0.26 0.39 0.53	2.89 0.17 0.33 0.50 0.66	3.51 0.20 0.40 0.61 0.81	4.16 0.24 0.48 0.72 0.96	4.86 0.28 0.56 0.84 1.12	5.65 0.32 0.65 0.97 1.30
35.4 37.0 38.6 40.1 41.7 43.2 41.0 42.9 44.6 46.4 48.2 49.9 46.3 48.3 50.3 52.2 54.2 56.1 51.1 53.2 55.4 57.5 59.6 61.6 55.4 57.8 60.0 62.2 64.4 66.5	46.2 250 53.3 300 59.8 350 65.6 400 70.6 450	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	0.16 0.19 0.22 0.26 0.29	0.32 0.39 0.45 0.52 0.58	0.49 0.59 0.69 0.78 0.88	0.66 0.79 0.92 1.05 1.18	0.83 1.00 1.16 1.33 1.50	1.01 1.21 1.41 1.62 1.82	1.20 1.44 1.67 1.91 2.15	1.40 1.68 1.96 2.23 2.51	1.62 1.95 2.27 2.60 2.92
59.4 61.8 64.1 66.4 68.6 70.8 52.8 65.2 67.6 69.9 72.1 74.2 55.7 68.2 70.5 72.7 74.9 76.9 58.1 70.5 72.7 74.9 76.9 78.8 59.9 72.2 74.3 76.3 78.1 79.7	74.9 50 78.3 55 80.7 60 82.2 65 70	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	0.32 0.35 0.38 0.42 0.45	0.65 0.71 0.78 0.84 0.90	0.98 1.08 1.18 1.27 1.37	1.31 1.45 1.58 1.71 1.84	1.66 1.83 1.99 2.16 2.33	2.02 2.22 2.42 2.63 2.83	2.39 2.63 2.87 3.11 3.35	2.79 3.07 3.35 3.63 3.91	3.24 3.57 3.89 4.22 4.54
71.1 73.2 75.1 76.8 71.6 73.5	75/ 80 85/ 90 95/	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	0.48 0.51 0.54 0.58 0.61	0.97 1.03 1.10 1.16 1.23	1.47 1.57 1.66 1.76 1.86	1.97 2.10 2.24 2.37 2.50	2.49 2.66 2.83 2.99 3.16	3.03 3.23 3.43 3.63 3.84	3.59 3.83 4.07 4.31 4.55	4.19 4.47 4.75 5.03 5.31	4.87 5.19 5.52 5.84 6.16
Para outras combinações de RPM-Diâmetro não figuradas n tabela, consulte a Gates.	100 105 105 110 115 120	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	0.64 0.67 0.70 0.74 0.77	1.29 1.36 1.42 1.49 1.55	1.96 2.06 2.15 2.25 2.35	2.63 2.76 2.89 3.02 3.16	3.32 3.49 3.66 3.82 3.99	4.04 4.24 4.44 4.64 4.85	4.78 5.02 5.26 5.50 5.74	5.59 5.87 6.14 6.42 6.70	6.49 6.81 7.14 7.46 7.79
	125 130	0.00	0.80 0.83	1.62 1.68	2.45 2.55	3.29 3.42	4.15 4.32	5.05 5.25	5.98 6.22	6.98 7.26	8.11 8.44
idades (do eixo ou operação). 0m/s . Onde as vibrações forem											

cidade da correia acima de 30m/s, consulte a Gates

 Super HC
 Para cada 25 mm adicionais, acrescentar ± 0,05 mm
 Para cada 25 mm adicionais, acrescentar ± 0,05 mm

Gates do Brasil

Image: Dimension of the sector of the sec						17		
Image: transmission of the second		Gates	Dime	ensõe	s das Pol	ias		
Image: height of the second		$\frac{1}{\lambda} \frac{1}{\lambda}$	-f2 - f3	ha				
hg Nominal DE - DP +/-0,4 (mm) Se (mm) 8,6 1,27 10,3 9 +2 -1 15,0 2,54 17,5 13 +3 -1 25,1 5,08 28,6 19 +6 -2 odos os canais em quaisquer polias não;deve exceder em ± 0,8 mm hg Nominal DE - DP (mm) +/-0,64 (mm) Se (mm) 11,7 6,35 15,88 9,53 +2.3 -1.6 14,0 8,89 19,05 12,70 +3.0 -1.7 19,1 10,16 25,40 17,48 +4,1 -1.8 25,9 15,24 36,53 22,23 +5.6 -2,3 odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). a dâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, secentar 0,01 mm Para diâmetros externos até 125 mm 0,13 mm a diâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm			S Se					
8.6 1.27 10.3 $9 \stackrel{+ 2}{-1}$ 15.0 2.54 17.5 13 $\stackrel{+ 3}{-1}$ 25.1 5.08 28.6 19 $\stackrel{+ 6}{-2}$ odos os canais em quaisquer polias não; deve exceder em ± 0,8 mm $\frac{Mn}{Mm}$ $\frac{DE - DP}{(mm)}$ $\frac{+7}{0.64}$ Se (mm) 11.7 6.35 15.88 9.53 $\stackrel{+ 2.3}{-1.6}$ 14.0 8.89 19.05 12.70 $\stackrel{+ 3.0}{-1.7}$ 19.1 10.16 25.40 17.48 $\stackrel{+ 4.1}{-1.8}$ 25.9 15.24 36.53 22.23 $\stackrel{+ 5.6}{-2.0}$ 32.3 20.32 44.45 28.57 $\stackrel{+ 7.1}{-2.3}$ odos os canais em quaisquer polias não deve exceder em ± 1.27 mm lecer aos seguintes limites: n n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal a tiámetros externos 250 mm 0,25 mm a ciámetros externos 250 mm 0,25 mm <tr< td=""><td>hg Min. (mm)</td><td>Nominal DE - DP (mm)</td><td>S +/- 0,4 (mm)</td><td></td><td>Se (mm)</td><td></td></tr<>	hg Min. (mm)	Nominal DE - DP (mm)	S +/- 0,4 (mm)		Se (mm)			
15,0 2,54 17,5 13 $\frac{+3}{-1}$ 25,1 5,08 28,6 19 $\frac{+6}{-2}$ odos os canais em quaisquer polias não; deve exceder em ± 0,8 mm Min DE - DP (mm) +/- 0,64 Se (mm) 11,7 6,35 15,88 9,53 $\frac{+2,3}{-1,6}$ 14,0 8,89 19,05 12,70 $\frac{+3,0}{-1,7}$ 19,1 10,16 25,40 17,48 $\frac{+4,1}{-1,8}$ 25,9 15,24 36,53 22,23 $\frac{+5,6}{-2,3}$ odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal Desvio radial Desvio axial Para diâmetros externos até 125 mm0,13 mm a cada 25 mm adicionais, secentar 0,01 mm Para adiâmetros externos até 125 mm0,13 mm a ciâmetros externos 250 mm0,25 mm Para diâmetros externos até 125 mm0,13 mm a ciâmetros externos 250 mm0,25 mm Para diâmetros externos até 125 mm0,13 mm a ciâmetros externos 250 mm	8,6	1,27	10,3		9 <mark>+ 2</mark> - 1			
25,15,0828,6 $19 + 6 - 2$ odos os canais em quaisquer polias não deve exceder em ± 0,8 mm $\frac{Min}{Min}$ $\frac{DE - DP}{(mm)}$ $+/-0,64$ Se (mm)11,76,3515,889,53 + 2,314,08,8919,0512,70 + 3.019,110,1625,4017,48 + 4,125,915,2436,5322,23 + 5.623,320,3244,4528,57 + 7,124,44528,57 + 7,1-2,3odos os canais em quaisquer polias não deve exceder em ± 1,27 mmlecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canalDesvio radialDesvio axial Para diâmetros externos até 125 mm 0,13 mm Para cada 25 mm adicionais, secentar 0,01 mma diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, secentar 0,01 mmPara diâmetros externos até 125 mm 0,13 mm Para cada 25 mm adicionais, acrescentar 0,03 mma ciâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,03 mmPara diâmetros externos até 125 mm 0,13 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	15,0	2,54	17,5		13 ⁺³ _1			
dodos os canais em quaisquer polias não¿deve exceder em ± 0.8 mmhg Min. DE - DP (mm)+/- 0.64 (mm)Se (mm)11.76.3515.889.53 ± 2.3 -1.6 14.08.8919.0512.70 ± 3.0 -1.7 19.110.1625.4017.48 ± 4.1 -1.8 25.915.2436.5322.23 ± 5.6 -2.0 32.320.3244.4528.57 ± 7.1 -2.3 odos os canais em quaisquer polias não deve exceder em ± 1.27 mm lecer aos seguintes limites: n (acrescentar 0.01 mm para cada canal adicional). nais $= 0.33$ mm (acrescentar 0.01 mm para cada canal até 125 mm0.13 mm Para diâmetros externos até 125 mm0.13 mm Para cada 25 mm adicionais, secentar 0.01 mm Para cada 25 mm adicionais, secentar 0.01 mm Para cada 25 mm adicionais, acrescentar 0.03 mma diâmetros externos 250 mm0,25 mm a cada 25 mm adicionais, secentar 0.01 mmPara diâmetros externos até 125 mm0,13 mm Para cada 25 mm adicionais, acrescentar 0.03 mm	25,1	5,08	28,6		19 ⁺⁶ -2			
hg (mm) Nominal DE - DP (mm) +/- 0,64 (mm) Se (mm) 11,7 6,35 15,88 9,53 + 2,3 - 1,6 14,0 8,89 19,05 12,70 + 3,0 - 1,7 19,1 10,16 25,40 17,48 + 4,1 - 1,8 25,9 15,24 36,53 22,23 + 5,6 - 2,0 32,3 20,32 44,45 28,57 + 7,1 - 2,3 odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal diâmetros externos até 125 mm 0,13 mm Desvio radial Desvio axial para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm	odos os car	nais em quaisquer p	oolias não _c deve ex	ceder	em ± 0,8 r	nm		
11.7 6,35 15,88 9,53 + 2.3 - 1,6 14,0 8,89 19,05 12,70 + 3.0 - 1.7 19,1 10,16 25,40 17,48 + 4,1 - 1.8 25,9 15,24 36,53 22,23 + 5.6 - 2.0 32,3 20,32 44,45 28,57 + 7,1 - 2,3 odos os canais em quaisquer polias não deve exceder em ± 1,27 mm 1,270 mm para cada canal adicional). neix = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). Para diâmetros externos até 125 mm 0,13 mm a cada 25 mm adicionais, scentar 0,01 mm Para adiámetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para adiametros externos até 125 mm 0,13 mm	hg Min. (mm)	Nominal DE - DP (mm)	S +/- 0,64 (mm)		Se (mm)			
14,0 8,89 19,05 $12,70 + 3,0 - 1,7$ 19,1 10,16 25,40 $17,48 + 4,1 - 1,8$ 25,9 15,24 36,53 $22,23 + 5,6 - 2,0$ 32,3 20,32 44,45 $28,57 + 7,1 - 2,3$ odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: in (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). a ciâmetros externos 250 mm 0,25 mm até 125 mm 0,13 mm a cada 25 mm adicionais, secentar 0,01 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a ciâmetros externos 250 mm 0,25 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	11,7	6,35	15,88	9	,53 ^{+2,3} -1,6			
19,110,1625,40 $17,48 + 4.1 \\ -1,8$ 25,915,2436,53 $22,23 + 5.6 \\ -2,0$ 32,320,3244,45 $28,57 + 7.1 \\ -2,3$ odos os canais em quaisquer polias não deve exceder em ± 1,27 mmlecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal dâmetros externos até 125 mm 0,13 mm Para cada 25 mm adicionais, acrescentar 0,03 mma diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,03 mma diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,03 mma diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,03 mma diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,03 mm	14,0	8,89	19,05	12	12,70 +3,0 -1,7			
25,9 15,24 36,53 22,23 + 5,6 - 2,0 32,3 20,32 44,45 28,57 + 7,1 - 2,3 odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal a diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, escentar 0,01 mm Para diâmetros externos 250 mm 0,25 mm a ciâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, escentar 0,01 mm Para cada 25 mm adicionais, escentar 0,03 mm	19,1	10,16	25,40	17	17,48 ^{+4,1} -1,8			
32,3 20,32 44,45 28,57 +7,1 odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal Desvio radial Desvio axial a diâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, secentar 0,01 mm Para cada 25 mm adicionais, a ciâmetros externos 250 mm 0,25 mm a cada 25 mm adicionais, acrescentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	25,9	15,24	36,53	22	22,23 +5,6 -2,0			
odos os canais em quaisquer polias não deve exceder em ± 1,27 mm lecer aos seguintes limites: n (acrescentar 0,01 mm para cada canal adicional). nais = 0,33 mm (acrescentar 0,01 mm para cada canal Desvio radial Desvio axial a diâmetros externos Para diâmetros externos 250 mm 0,25 mm Para cada 25 mm adicionais, a cada 25 mm adicionais, Para cada 25 mm adicionais, a ciâmetros externos Para diâmetros externos 250 mm 0,25 mm Para cada 25 mm adicionais, a cada 25 mm adicionais, Para cada 25 mm adicionais, a ciâmetros externos Para diâmetros externos 250 mm 0,25 mm Para cada 25 mm adicionais, a cada 25 mm adicionais, Para cada 25 mm adicionais, a cada 25 mm adicionais, Para cada 25 mm adicionais, a cada 25 mm adicionais, Para cada 25 mm adicionais, acrescentar 0,01 mm Para cada 25 mm adicionais,	32,3	20,32	44,45	28	3,57 +7,1 -2,3			
Desvio radial Desvio axial a diâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a cada 25 mm adicionais, escentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm a diâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a cada 25 mm adicionais, scentar 0,01 mm Para diâmetros externos até 125 mm 0,13 mm a cada 25 mm adicionais, secentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	odos os car lecer aos n (acresci nais = 0,	nais em quaisquer p seguintes limite entar 0,01 mm p 33 mm (acresce	iolias não deve ex s: para cada cana entar 0,01 mm	l adic para	em ± 1,27 i ional). i cada car	nal		
a diametros externos 250 mm 0,25 mm até 125 mm 0,13 mm a cada 25 mm adicionais, escentar 0,01 mm Para diámetros externos a diâmetros externos 250 mm 0,25 mm até 125 mm 0,13 mm a diâmetros externos 250 mm 0,25 mm até 125 mm 0,13 mm a cada 25 mm adicionais, escentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	Desvio	radial	Des	svio ax	rial			
a cada zo mm adicionais, escentar 0,01 mm Para cada zo mm adicionais, acrescentar 0,03 mm a diâmetros externos 250 mm 0,25 mm Para diâmetros externos até 125 mm 0,13 mm a cada 25 mm adicionais, escentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	a diâmetros 250 mm	externos 0,25 mm	até 125 mm	0,1	3 mm			
a diâmetros externos 250 mm 0,25 mm até 125 mm 0,13 mm a cada 25 mm adicionais, escentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	a cada 25 n escentar 0,0	nm adicionais,)1 mm	acrescentar	0,03 n	nm			
a cada 25 mm adicionais, ascentar 0,01 mm Para cada 25 mm adicionais, acrescentar 0,03 mm	a diâmetros 250 mm	externos 0,25 mm	Para diâme até 125 mm	tros ex	ternos 3 mm			
	a cada 25 n escentar 0,0	nm adicionais,)1 mm	Para cada 2 acrescentar	25 mm 0,03 n	adicionais, nm			
	1							

3.13.2 Catálogo de anéis elásticos da empresa Dober

Material: Aço mola beneficiado.

Acabamento: Fosfatizado.

Outras medidas, materiais e acabamentos sob encomenda.

Rua Benedito Alves Filho, 210 - Igaratá/ SP - Brasil - Fone/Fax: 11 4658-1222 - E-Mail: dober@dober.com.br

1	a
2	62)

ANÉIS ELÁSTICOS PARA RETENÇÃO EM EIXOS GRUPO 03 Os anéis do grupo 03 serão fornecidos facultativamente em uma das formas abaixo. Forma para d, ≤ 9 mm d3 é o diâmetro para o anel livre K = carga máxima admissível d₅ min. a máx. b ≅ n min. d_1 Tol.s d_3 Tol. d3 g máx. s 40 1,75 36,5 6,0 4,4 2,5 3,8 2,0 41 1,75 37,5 6,2 4,5 2,5 3,8 2,0 42 1,75 38,5 6,5 4,5 2,5 3,8 2,0 44 1,75 40,5 +06,6 4,6 2,5 3,8 2,0 45 1,75 0,0 41,5 6,7 4,7 2,5 3,8 2,0 +0,39 46 1,75 6,7 4,8 2,5 3,8 2,0 42,5 -0,90 47 1,75 43,5 6,8 4,9 2,5 3,8 2,0 48 1,75 44,5 2,5 3,8 2,0 6,9 5,0 50 2,00 6,9 5,1 2,5 4,5 2,0 45,8 52 2,00 47.8 7,0 5,2 2,5 4,5 2,5 54 2,00 49,8 7,1 5,3 2,5 4,5 2,5 55 2,00 7,2 5,4 2,5 4,5 2,5 50,8 56 2,00 51,8 7,3 5,5 2,5 4,5 2,5 57 2,00 52,8 7,3 5,5 2,5 4,5 2,5 58 2,00 7,3 5,6 2,5 4,5 2,5 53,8 60 2,00 55,8 7,4 5,8 2,5 4,5 2,5 62 2,00 57,8 7,5 6,0 2,5 4,5 2,5 63 2,00 58,8 7,6 6,2 2,5 4,5 2,5 -0.07 65 2,50 60,8 7,8 6,3 3,0 4,5 2,5 67 2,50 62,5 +0,46 7,9 6,4 3,0 4,5 2,5 68 2,50 63,5 3,0 8,0 6,5 4,5 2,5 70 2,50 65,5 8,1 6,6 3,0 4,5 2,5 72 2,50 67,5 8,2 6,8 3,0 4,5 2,5 23650 69,0 75 2,50 70,5 8,4 7,0 3,0 4,5 2,5 77 2,50 8,5 7,2 3,0 4,5 3,0 72,5 78 2,50 73,5 8,6 7,3 3,0 4,5 3,0 23950 75,0 74,5 80 2,50 8,6 7,4 3,0 5,3 3,0 82 2,50 76,5 8,7 7,6 3,0 5,3 3,0 85 3,00 79,5 8,7 7,8 3,5 5,3 3,0 87 3,00 81,5 +0,54 8,8 7,9 3,5 5,3 3,0 -0,08 88 3,00 82,5 8,8 8,0 3,5 5,3 3,0

Material: Aço mola beneficiado. Acabamento: Fosfatizado

Rua Benedito Alves Filho, 210 - Igaratá/ SP - Brasil - Fone/Fax: 11 4658-1222 - E-Mail: dober@dober.com.br

Outras medidas, materiais e acabamentos sob encomenda.

3.13.3 Catálogo completo de correntes de transmissão da empresa Daido

0				<u>E</u>	2	A corrente de transmissão é composta de igualdades, ou seja: elo externos montados alternadamente.	s internos e elos				
CONSTRUÇA		(G ^Q (
	TERNO	REBITADO		Ś		O elo de pino consiste de quatro partes, sendo duas placas e dois contrapinado, os pinos são prensados e rebitados em uma placa e pela outra para receber os contrapinos. No tipo rebitado, os pinos rebitados em ambas as placas.	pinos. No tipo passam justo são prensados e				
COMPONENTES	ELO E CONTRAPINADO										
	ELO INTERNO	(E C	Se C	0	O elo interno consiste de seis partes, sendo dois rolos com giro livre, sobre duas buchas que são prensadas em ambos os lados, sobre duas placas.					
	PINOS				8	Os pinos são importantes membros para a formação da corrente, p juntamente com as buchas, suportando a carga de tração e por esi alta resistência à fadiga, cisalhamento e flexão.	pois eles atuam ta razão requerem				
	BUCHA		\bigcirc)		A bucha envolve o pino protegendo-o contra os impactos do engrenamento. Por este motivo, requer alta resistência à fadiga.					
PARTES	ROLO		Ø)		O rolo serve para amortecer os impactos resultantes do engrenamento. Por isto, importantes fatores são requeridos: alta resistência ao impacto, fadiga e desgaste.					
	CAS	PLACA	(O	D		A placa é o membro que segura os pinos e buchas em suas posiçõe do conjunto. De modo que requer alta resistência à tração, à fadiga	s e suporta a carga a e ao choque.				
	PLA	PLACA	6	Ð]					
COMUM	EMENDA	CONTRAPINO	C de se	,	Dois pinos pela outra p usada nas o	são prensados e rebitados em uma placa, e passam deslizando para receber os contrapinos. Este tipo de emenda é principalmente correntes DID 80 a 240. (Passo de 1° a 3° ou maior)	Estes elos de emendas são tipos especiais de Elo de Pino, usados para fazer a junção das extremidades da				
EMENDA	EMENDA	GRAMPO	(J)		Dois pinos outra para r usado nas o	são prensados e rebitados em uma placa e passam deslizando pela receber o grampo elástico. Este tipo de emenda é principalmente correntes DID 40 a 60. (Passo de 1/2"a 3/4")					
EMENDA	DE	REDUÇAO			É um tipo es rolo girando o pino tem tendo tamb	special de emenda, em que metade recebe uma bucha prensada em a o livre, e a outra metade recebe um pino que passa livremente pelas j uma cabeça recalcada e no outro um chato, que encaixa na placa pa ém um furo para receber o contrapino.	ambas as placas, com um placas, sendo que um lado ra impedir o giro do pino,				

ΕX	ΕM	PL	0:	

- a-10 KW de potência
- b-100 rpm na roda dentada menor

c- Equipamento com carga constante acionado por motor elétrico, portanto conforme a tabela grau de impulsividade = 1,0

potência corrigida = grau de impulsividade x potência 10 x 1,0 = (10 kw)

O ponto de cruzamento da linha horizontal (100 rpm) com a linha vertical (10 KW), é um pouco superior a uma roda dentada de 21 dentes, com uma corrente DID 100.

Portanto deve-se optar por uma corrente DID 100 com uma roda dentada de 23 dentes

9

<section-header>

DID 40

																				U	mensoes (mm)
CORRENT	TE №	Pas	s0	Lam					PI	NO				Passo		PLACA		ANSI Corros do	DAIDO	DAIDO	Peso
DAIDO	ISO F	P	,	entre Placas	Diâm. do Rolo	Diâm.								Trans_ versal				Ruptura	Ruptura média	Admissivel	nprox.
DAIDO	ABNT	mm	in	W	D	d	Ε	F	G	L	е	f	g	С	т	Н	h	(Kgf)	(Kgf)	(Kgf)	(Kg/m)
DID 40	08 A-1						16,5	17,8	18,5	19,2								1407	1750	320	0,63
DID 40-2	08 A-2	12 70	412	7.04	7.02	2.07	31,0	32,2	33,1	33,6	• •	0.5	10.2	14.4	1.50	12.0	10.4	2814	3500	544	1,19
DID 40-3	08 A-3	12,10	1/2	1,04	7,94 7,92	3,57	45,5	46,6	47,6	48,0	0,5	3,5	10,2	14,4	1,00	12,0	10,4	4221	5250	800	1,78
DID 40-4	08 A-4						60,0	61,0	62,2	62,4								5628	7000	1056	2,37

DID 50

CORRENT	EN⁰	Pas	so	1.000					PI	NO				Passo		PLACA		ANSI	DAIDO	DAIDO	Peso
ΠΑΙΠΟ	ISO F	P	,	entre Placas	Diâm. do Rolo	Diâm.								Trans_ versal				Carga de Ruptura	Carga de Ruptura média	Carga max. Admissivel	Aprox.
DAIDO	ABNT	mm	in	W	D	d	Ε	F	G	L	e	f	g	c	Т	н	h	(Kgf)	(Kgf)	(Kgf)	(Kg/m)
DID 50	10 A-1						20,3	22,0	22,4	23,0								2223	2900	550	1,06
DID 50-2	10 A-2						38,6	40,1	40,7	41,1								4446	5800	935	2,04
DID 50-3	10 A-3	15,875	5/8	9,53	10,16	5,09	56,8	58,2	58,8	59,2	10,2	11,8	12,2	18,1	2,00	15,0	13,0	6669	8700	1375	3,06
DID 50-4	10 A-4						74,9	76,3	77,0	77,5								8892	11600	1815	4,06
DID 50-5	10 A-5						93,1	94,4	95,1	95,7								11115	14500	2145	5,08

Dimensiões (mm)

DID 60

CORRENT	ΈN°	Pas	so	Lorra					Pl	NO				Passo		PLACA		ANSI	DAIDO	DAIDO	Peso
DAIDO	ISO E ABNT	P	in	entre Placas W	Diâm. do Rolo D	Diâm. d	E	F	G	L	e	f	a	Trans_ versal C	т	н	h	Carga de Ruptura (Kof)	Carga de Ruptura média (Kof)	Carga max. Admissivel (Kaf)	Aprox. (Ka/m)
	ABAT				-	-	-		-	-	•		3	-				1.1317	1. 94	1.1317	1.99
DID 60	12 A-1						25,7	27,2	28,0	28,7								3172	4100	720	1,44
DID 60-2	12 A-2						48,6	50,1	51,1	51,5								6344	8200	1224	3,03
DID 60-3	12 A-3	19,05	3/4	12,70	11,91	5,96	71,6	72,9	74,0	74,5	12,9	14,3	15,1	22,8	2,40	18,1	15,6	9516	12300	1800	4,51
DID 60-4	12 A-4						94,5	95,6	97,0	97,5								12688	16400	2376	6,03
DID 60-5	12 A-5						117,5	118,4	119,9	120,5								15860	20500	2808	7,53

CORRENTES DE ROLO ANSI "STANDARD"

DID 80

																	0	Ximensões (mm
CORRENT	ΈN°	Pas	so	Larg.	Diâm.			PINO			Passo		PLACA		ANSI Carra da	DAIDO Carra de	DAIDO	Peso Anrox
04/00	ISO	Р		entrə Placas	do Rolo	Diám.					Trans- versal				Ruptura	Ruptura	máx. Admissíval	sprox.
DAIDO	ABNT	mm	in	W	D	d	E	G	e	g	C	т	н	h	(Kgf)	(Kgf)	(Kgf)	(Kg/m)
DID 80	16 A-1						32,8	35,3							5670	6900	1250	2,55
DID 80-2	16 A-2						62,1	64,7							11340	13800	2125	5,07
DID 80-3	16 A-3	25,40	1	15,88	15,88	7,94	91,5	94,0	16,4	19,0	29,3	3,20	24,0	20,8	17010	20700	3125	7,58
DID 80-4	16 A-4						120,8	123,3							22680	27600	4125	10,10
DID 80-5	16 A-5						150,1	152,5							28350	34500	4875	12,60

DID 100

																	D	timensões (mm
CORRENT	ΈN°	Pas	so	Lara.	Diám.			PINO			Passo		PLACA		ANSI Carra de	DAIDO Carra de	DAIDO	Peso Aprox
04/00	ISO	P		entre Placas	do Rolo	Diām.					Trans_ versal				Ruptura	Ruptura	máx. Admissível	ripioni
DAIDO	ABNT	mm	in	W	D	d	E	G	е	g	C	т	н	h	(Kgf)	(Kgf)	(Kgf)	(Kg/m)
DID 100	20 A-1						40,5	43,0							8841	11500	2000	3,79
DID 100-2	20 A-2						76,5	79,0							17682	23000	3400	7,53
DID 100-3	20 A-3	31,75	1.1/4	19,05	19,05	9,54	112,4	114,9	20,2	22,7	35,8	4,00	29,9	26,0	26523	34500	5000	11,30
DID 100-4	20 A-4						148,3	150,8							35364	46000	6600	15,10
DID 100-5	20 A-5						184,2	186,7							44205	57500	7800	18,90

DID 120

																	Ľ	Nimensões (mrt
CORRENT	TE Nº	Pas	so	Lara	Diām.			PINO			Passo		PLACA		ANSI Carra da	DAIDO Carra da	DAIDO	Peso Aprox
04/00	ISO	Р		entre Placas	do Rolo	Diám.					Trans_ versal				Ruptura	Ruptura	máx. Admissível	r gor own
DAIDO	ABNT	mm	in	W	D	d	E	G	е	g	С	т	н	h	(Kgf)	(Kgf)	(Kgf)	(Kg/m)
DID 120	24 A-1						50,8	53,3							12706	16800	2900	5,49
DID 120-2	24 A-2						96,4	99,1							25412	33600	4930	11,00
DID 120-3	24 A-3	38,10	1.1/2	25,40	22,23	11,11	142,0	144,7	25,4	28,2	45,4	4,80	35,9	31,2	38118	50400	7250	16,50
DID 120-4	24 A-4						187,6	190,3							50824	67200	9570	22,00
DID 120-5	24 A-5						233,2	235,9							63530	84000	11310	27,50

10

Ensaios mecânicos dos materiais

Capítulo 4

Para a realização dos ensaios mecânicos, podemos utilizar corpos de provas (elementos normalmente normalizados) ou o produto.

A determinação do ensaio adequado depende do tipo de solicitação e situação de trabalho a que o material estará sujeito durante sua utilização. A figura 4.2 mostra esquematicamente os tipos de esforços que atuam nos materiais.

Em todos os casos a aplicação da força deve ser dimensionada de acordo com cada ensaio, para não invalidá-lo.

Com base em uma amostragem estatística representativa do volume recebido, as propriedades mecânicas e o comportamento dos materiais nos ensaios mecânicos são definidos sob determinadas condições de esforço e em conformidade com normas técnicas. A normalização é fundamental para que se estabeleça uma linguagem comum entre fornecedores e usuários dos materiais.

Os ensaios dos materiais seguem normas técnicas determinadas por associações como: ABNT (Associação Brasileira de Normas Técnicas), ASTM (American Society for Testing and Materials), DIN (Deutsches Institut für Normung), AFNOR (Association Française de Normalisation), BSI (British Standards Institution), ASME (American Society of Mechanical Engenieers), ISO (International Organization for Standardization), JIS (Japanese Industrial Standards), SAE (Society of Automotive Engenieers), Copant (Comissão Pan-Americana de Normas Técnicas), além de diversas normas particulares de indústrias ou companhias governamentais.

4.1 Objetivos dos ensaios mecânicos

Os ensaios mecânicos, de modo geral, têm por objetivo:

- determinar o comportamento dos materiais para fins de projetos;
- determinar as causas de falhas de materiais e componentes em serviço;
- elaborar novos materiais, para conhecer suas propriedades;

determinação das propriedades mecânicas, dos defeitos e da descontinuidade de materiais é realizada por meio de vários tipos de ensaio.

Como mostra a figura 4.1, os ensaios podem ser classificados em:

- destrutivos: promovem a ruptura ou a inutilização do material a ser ensaiado. Exemplos: tração, compressão, cisalhamento, torção, dureza, dobramento, embutimento, fadiga, impacto, entre outros.
- não destrutivos: não danificam o material a ser ensaiado e são capazes de detectar, durante as diversas fases do processo de fabricação, defeitos ou descontinuidades que dificilmente seriam encontradas por meio de ensaios destrutivos. Dessa maneira aumentam a confiabilidade das propriedades dos materiais e, por consequência, dos produtos finais. Exemplos: visuais, por líquido penetrante (visível e fluorescente), por partículas magnéticas (yoke, bobina, eletrodo, condutor central e contato direto), por radiações ionizantes (raios X e raios gama) e por ultrassom.

Figura 4.2

Tipos de esforços que atuam nos materiais.

• controlar o processo produtivo para poder avaliar se as propriedades dos materiais são mantidas durante o processo, a fim de que haja conformidade entre as especificações do projeto e o produto final.

4.2 Tração

O ensaio de tração avalia as propriedades mecânicas de materiais. O procedimento experimental consiste na aplicação de tensões progressivas ao longo do eixo de um corpo de prova, isto é, perpendicularmente à seção transversal, conforme esquema na figura 4.4.

Figura 4.3 Corpos de prova.

Para a aplicação dessa força progressiva, utiliza-se uma máquina específica, que fará o ensaio de tração, como indicado na figura 4.4.

272

O ensaio é realizado por meio de aplicação constante de carga de tração. Durante esse processo, o corpo de prova permanece fixado em suas extremidades. A máquina mede, então, a carga aplicada (digital ou analógica) com auxílio de um equipamento eletrônico que mede o alongamento em função da carga.

Os resultados desses ensaios de tração normalmente são registrados por um computador, que mostra gráficos na forma de carga ou força em função do alongamento.

Com esses valores conseguimos traçar o gráfico de tensão por deformação com seus pontos críticos, conforme mostra a figura 4.6.

Na figura:

Ponto I: limite de proporcionalidade (lei de Hooke) – Região onde as deformações são proporcionais às tensões. CAPÍTULO 4

Figura 4.5

Máquina universal de ensaios.

Figura 4.6 Gráfico tensão-deformação e seus pontos críticos.

Ponto II: limite de elasticidade - Elasticidade é a propriedade do material de retornar a seu tamanho inicial assim que a força deixa de agir sobre ele.

Ponto III: limite de escoamento - Caracteriza a perda da propriedade elástica do material.

Ponto IV: limite de resistência ou tensão de ruptura - Maior tensão que o corpo pode suportar.

Ponto V: limite de ruptura – Instante em que ocorre a ruptura do corpo.

A carga aplicada e a deformação produzida são funções do tamanho do corpo de prova. Em um ensaio, para que a carga necessária não exceda a capacidade da máquina, as dimensões do corpo de prova são definidas de acordo com a tensão estimada para o material em estudo.

A tensão (σ) é definida pela relação:

$$\sigma = \frac{F}{A_0}$$

 $\sigma = tensão;$ F =força aplicada; A_0 = área da seção inicial do corpo onde a carga é aplicada diretamente.

4.2.1 Limite de elasticidade

Elasticidade é a capacidade de um material de voltar à forma original quando se retira a carga aplicada. A deformação elástica é reversível, ou seja, desaparece quando a carga é removida.

Até certo limite de tensão aplicada, o material trabalha no regime elástico, isto é, segue a lei de Hooke, e a deformação linear específica é proporcional ao esforço aplicado.

A proporcionalidade pode ser observada no trecho retilíneo do diagrama tensão--deformação, e a constante de proporcionalidade é denominada módulo de deformação longitudinal ou módulo de elasticidade.

Ultrapassado o limite de proporcionalidade, inicia-se a fase plástica, na qual ocorrem deformações crescentes sem variação de tensão (patamar de escoamento). O valor constante dessa tensão, denominado limite de resistência ao escoamento, é uma importante característica.

Após o escoamento, verifica-se novamente a variação de tensão com a deformação específica, porém de forma não linear.

À relação entre os valores da tensão e da deformação linear específica, na fase elástica, denomina-se módulo de elasticidade, cujo valor é proporcional às forças

de atração entre os átomos. A expressão matemática para o cálculo dessa constante é dada por:

$$E = \frac{\sigma}{\epsilon}$$

em que:

```
E = módulo de elasticidade
\varepsilon = deformação linear (\varepsilon = \Delta L/L)
\sigma = tensão aplicada
```

4.2.2 Escoamento

Conforme mencionado anteriormente, depois da fase elástica vem a fase plástica. No início dessa fase ocorre uma deformação permanente no material, fenômeno chamado escoamento, que persiste mesmo quando se retira a força aplicada. É causado pelo aumento da velocidade de deformação e não pelo aumento de carga. Durante o escoamento a carga oscila entre valores muito próximos uns dos outros (Ponto III, figura 4.6).

4.2.3 Limite de resistência

Após o escoamento, ocorre o encruamento, endurecimento causado pela deformação a frio dos grãos. O material resiste ainda mais à tração externa impressa pela máquina de ensaio e exige uma tensão crescente para se deformar. O valor máximo de tensão atingido durante esse processo é denominado limite de resistência (L_R – Ponto IV, figura 4.6).

O cálculo do valor do limite de resistência ($L_{\rm R}$) pode ser estimado pela equação:

$$L_{R} = \frac{F_{máx}}{A_{0}}$$

4.2.4 Limite de ruptura

Em decorrência da aplicação contínua da tração, o material do corpo de prova se rompe em um ponto chamado limite de ruptura (V).

Observe que a tensão no limite de ruptura é menor que no limite de resistência, fato devido à diminuição da área em que ocorre no corpo de prova depois que este atinge a carga máxima.

4.2.5 Estricção

A capacidade do material de se deformar sem se romper é denominada ductilidade e pode ser avaliada por meio do alongamento (E) ou da estricção.

A estricção corresponde à redução na área da seção transversal do corpo de prova submetido a um ensaio de tração. Quanto mais dúctil o material, maior a redução de área antes da ruptura. Portanto, quanto maior a porcentagem de estricção, mais dúctil o material.

4.2.6 Avaliação das propriedades

O **alongamento** é a deformação de um corpo de prova (aumento do comprimento com diminuição da área da seção transversal) pela aplicação de uma força axial. A figura 4.7 mostra esquematicamente o alongamento antes e depois do ensaio de tração.

O alongamento do corpo de prova pode ser calculado de acordo com a equação a seguir:

$$A = \frac{L_{f} - L_{0}}{L_{0}} \left[\frac{mm}{mm} \right] \text{ ou } A = \frac{L_{f} - L_{0}}{L_{0}} \cdot 100 [\%]$$

Sendo:

 L_f = comprimento final do corpo de prova;

 $L_0 =$ comprimento inicial do corpo de prova.

O **limite elástico** é definido convencionando-se um valor **n** de deformação específica, em função do tipo de material (ver gráfico da figura 4.8):

n = 0,2% para metais e ligas metálicas em geral;

n = 0,1% para aços-molas ou ligas não ferrosas mais duras;

n = 0,01% para aços-molas.

O **módulo de elasticidade** ou **módulo de Young** é a relação constante entre a tensão (σ) e a deformação (ϵ) na fase elástica do material. É a medida da rigidez do material. Quanto maior o módulo, menor a deformação elástica e mais rígido o material. Pode ser calculado de acordo com a equação a seguir:

$$\mathsf{E} = \frac{\sigma}{\epsilon}$$

É possível observar na figura 4.9 o comportamento de algumas ligas metálicas.

Figura 4.8 Localização de **n** no gráfico de tensão-deformação.

Figura 4.9

Relação do comportamento entre tensão e deformação para algumas ligas comerciais.

4.3 Compressão

O ensaio de compressão é semelhante ao de tração quando comparadas as fases elásticas e plásticas, em que também é válida a lei de Hooke. As forças para a deformação do corpo são apontadas para o centro do corpo, como indicado na figura 4.10. O ensaio de compressão também pode ser realizado em uma máquina de ensaio universal ou, então, utiliza-se um equipamento específico, como mostrado na figura 4.11.

Figura 4.10 Material solicitado ao esforço de compressão.

Figura 4.11 Máquina de ensaio de compressão.

Quando ensaiado, o material dúctil comporta-se elasticamente até a tensão de escoamento. Após esse processo, ocorre a deformação plástica. Com o aumento da tensão e da deformação, verifica-se o encruamento, e o diâmetro do material alarga sem ocorrer rupturas, até que o material se transforme em um disco.

Por esse motivo, o ensaio fornece apenas as propriedades referentes à zona elástica, e as propriedades mais avaliadas são o limite de proporcionalidade, o limite de escoamento e o módulo de elasticidade.

O material frágil não é suscetível a grandes deformações laterais. Dessa forma, com o aumento da carga de compressão, ocorre ruptura por cisalhamento em plano inclinado, normalmente a 45° do eixo de aplicação da carga (plano de máximas tensões cortantes). A figura 4.12 indica o comportamento de materiais dúcteis e frágeis sujeitos à compressão. Nesse ensaio avalia-se somente seu limite de resistência à compressão, calculado da mesma forma que no ensaio de tração.

O corpo de prova deve necessariamente ser confeccionado segundo norma técnica ASTM E9-89 A, para que não ceda a esforços de flambagem e flexão. Além disso, o comprimento útil para a medição das deformações tem de estar afastado das superfícies de contato do corpo de prova com a máquina de ensaio. O valor do afastamento é de 1 diâmetro, e o corpo de prova deve ser posicionado de maneira concêntrica, de modo a manter o alinhamento de seu centro em relação ao centro das superfícies de contato da máquina.

As relações L/D (comprimento/diâmetro) são dadas na tabela 4.1.

Corpo de prova	Diâmetro (mm)	Comprimento (L) (mm)	Relação L/D
Pasuana	30 ± 0,2	25 ± 0,1	0,84
requeno	I3 ± 0,2	25 ± 0,1	1,92
	13 ± 0,2	38 ± 0,1	2,92
Média	20 ± 0,2	60 ± 3,0	3
riedio	25 ± 0,2	75 ± 3,0	3
	30 ± 0,2	85 ± 3,0	2,83
Lanza	20 ± 0,2	160 ± 3,0	8
Longo	32 ± 0,2	320	10

*Segundo ASTM E9-89 A

Figura 4.12

Desenho esquemático do comportamento de materiais sujeitos à compressão.

Tabela 4.1

Dimensões dos corpos de prova ensaiados em compressão*.

Como no ensaio de tração, no ensaio de compressão também são válidas algumas propriedades para os materiais dúcteis e os materiais frágeis, como mostradas na tabela 4.2.

Tabela de comparação de propriedades de alguns aços na tração e compressão.

Tabela 4.2

- Para materiais dúcteis: o cálculo da tensão (σ), do alongamento (ϵ) e do módulo de elasticidade (E).
- Para materiais frágeis: o limite de resistência à compressão (L_r).

		Tração			Compressão						
	σ _p	σ _e (kgf/mm²)	σ _r	E	σ _p	σ _e (kgf/mm²)	E				
AISI 1035	44,1	46,9	67,9	21000	46,9	49,7	21000				
AISI 1046	52,5	56,0	84,0	21000	54,6	59,5	21000				
Aço 4340	78,4	86,1	94,5	21000	76,3	88,9	21000				

Sendo:

- σ_{p} = limite de proporcionalidade
- σ_e = limite de escoamento
- σ_r = limite de resistência
- E = módulo de elasticidade longitudinal.*

Geralmente, os materiais como concreto, cerâmicos, metais ferrosos e não ferrosos, compostos injetados ou sinterizados, plásticos etc. são ensaiados por compressão. As fotos a e b da figura 4.13 apresentam condições em que os materiais são solicitados à compressão.

Figura 4.13

a) Solicitação por compressão em muros de pedras. b) Solicitação por compressão na coluna do trem de pouso.

O atrito entre as faces dos cabeçotes da máquina e as faces do corpo de prova indicado na figura 4.14 altera os resultados. Para diminuir esse problema, é necessário revestir as faces, superior e inferior, do corpo de prova com materiais de baixo atrito (parafina, teflon etc.).

O atrito e a relação L/D (comprimento/diâmetro) interferem nos resultados do ensaio. A figura 4.15 mostra como esses fatores se inter-relacionam.

A relação L/D também influencia a característica da deformação do corpo de prova, como podemos observar na tabela 4.3.

Deformação						
Flambagem						
Cisalhamento						
Barril duplo						
Barril						
Compressão homogênea						
Instabilidade compressiva devido ao amolecimento do material por efeito de carga						

Figura 4.14

Regiões não deformadas devido ao atrito entre as faces do corpo de prova e as faces dos cabeçotes da máguina de ensaio.

cp áspero

cp lubrificado

cp sem atritocompressão homogênea

Figura 4.15

Variação das deformações com o atrito e a relação L/D.

Tabela 4.3

Relação L/D e características da deformação.

4.3.1 Limitações do ensaio de compressão

- Dificuldade na aplicação da força no centro do material a ser ensaiado.
- Atrito entre corpo de prova e cabeçotes da máquina de ensaio.

4.4 Cisalhamento

Cisalhamento é o escorregamento, em determinado plano, entre as partículas de um material submetido a forças contrárias que agem sobre a superfície do corpo de prova, como indicado na figura 4.16. O cisalhamento é utilizado para a verificação da resistência ao corte no sentido transversal de pinos, parafusos ou chapas.

A **tensão de cisalhamento** ou **tensão de corte** é gerada por forças aplicadas em sentidos opostos, porém na mesma direção. A figura 4.16 mostra um parafuso submetido a uma tensão de cisalhamento. Constatamos, nesse caso, que o material não foi bem dimensionado ou não foi o indicado e, por isso, sofre o cisalhamento e pode se romper, colocando em risco a estrutura em que estava fixado.

Figura 4.16 Forças opostas e o plano

de cisalhamento em relação ao corpo de prova.

Em processos de estampagem, principalmente em ferramentas de corte, determinar a resistência do material ao cisalhamento é bastante útil. Para o cálculo da tensão de cisalhamento é necessário saber a força aplicada para o rompimento do corpo de prova. Dividindo-se a força aplicada pela área cisalhada, obtém-se a tensão de cisalhamento, mostrada pela equação:

$$\tau_{c} = \frac{F}{S}$$

em que:

 τ_c = resistência ao cisalhamento ou corte (N/mm²);

F =força de corte (N);

S =área cisalhada do corpo de prova (mm²).

Na prática, o ensaio de cisalhamento demonstra que a força de corte leva em consideração a espessura inicial do material. Entretanto, quando o corte se inicia, a espessura diminui gradativamente e exige força cada vez menor. Verifica-se que, em aproximadamente um terço da espessura do material, o corte ocorre. Depois disso, não suporta a força aplicada e se rompe por cisalhamento. A fórmula aplicada para o cálculo da força de corte para uma prensa é a seguinte:

$$F_c = P \cdot e \cdot \tau_c$$

em que:

 $F_c =$ força de corte (N); P = perímetro cortado da peça (mm); e = espessura do material (mm); $\tau_c =$ resistência ao cisalhamento ou corte (N/mm²).

O ensaio de cisalhamento realizado em chapas utiliza uma ferramenta de cisalhamento do tipo Johnson, conforme indicado na figura 4.17. Nesse dispositivo, uma barra de seção retangular medindo 25 mm \times 50 mm, ou cilíndrica de 25 mm de diâmetro, é cortada, submetida à aplicação de uma força direcionada para uma peça móvel que funciona como guilhotina. Essa barra, em seguida, é forçada de encontro ao corpo de prova realizando seu corte. A tensão de cisalhamento é, então, calculada do mesmo modo como foi apresentado anteriormente, dividindo-se a força aplicada pela área cisalhada.

Para o ensaio de chapas finas e punção redondo utiliza-se uma ferramenta de estampos, como indicado na figura 4.18, em que um punção aplica uma força ou carga de encontro ao corpo de prova (material) que está sobre uma matriz. Como nos casos anteriores, a tensão de cisalhamento é calculada dividindo-se a força aplicada pela área cisalhada.

Figura 4.17

Ferramenta de cisalhamento Johnson.

Figura 4.18 Cisalhamento de chapas.

4.5 Dureza

A dureza é uma propriedade mecânica que tem relação com a resistência de um material que, pressionado por outro ou por penetradores padronizados, apresenta um risco ou uma deformação permanente.

Quanto à aplicação, os métodos de ensaios de dureza podem ser definidos em relação à força aplicada, que pode ser estática ou dinâmica, de acordo com a figura 4.19.

O ensaio de dureza se realiza com a utilização de penetradores padronizados de acordo com cada método. Os penetradores pressionam a superfície do material causando deformação elástica e plástica. A dureza do material é relacionada com a área ou a profundidade da marca.

A dureza de um material pode ser aumentada ou diminuída por meio de tratamentos térmicos, de acordo com a necessidade do emprego desse material. Os principais métodos de medir a dureza de um material são mostrados a seguir.

4.5.1 Dureza Brinell

Em 1900, Johan August Brinell propôs um novo método para a determinação da dureza. Em homenagem a ele, esse método é denominado **dureza Brinell** e é simbolizado por **HB**. É o ensaio de dureza mais usado até hoje.

O ensaio de dureza Brinell é realizado comprimindo de maneira controlada uma esfera de aço temperado, de diâmetro D, sobre a superfície do material ensaiado, que deve ser plana, polida e limpa na área do ensaio.

Aplicando uma carga F, durante um tempo t, a esfera produzirá uma marca (calota) de diâmetro d, dimensionada por meio de um micrômetro óptico. A figura 4.20 indica a impressão feita por uma esfera de diâmetro D em uma matriz. O valor d deve ser tomado como a média de duas leituras feitas a 90° uma da outra.

A dureza Brinell é definida, em N/mm² ou (kgf/mm²), como o quociente entre a carga aplicada, F, e a área de contato (calota esférica impressa), S_c , a qual é relacionada com os valores de D e d, conforme a expressão:

$$HB = \frac{F}{S_c} = \frac{F}{\pi D \cdot p} = \frac{2F}{\pi D(D - \sqrt{D^2 - d^2})}$$

em que:

p = profundidade da impressão (mm);D = diâmetro do penetrador (mm);

d = diâmetro da calota ou mossa (mm).

Como há muita dificuldade para a medição da profundidade (p), por ser pequena demais, utiliza-se uma relação matemática entre a profundidade (p) e o diâmetro da calota (d).

Aproveitando as informações da figura 4.20, com auxílio da matemática, podemos determinar uma equação para calcular a dureza Brinell. A dureza Brinell (HB) é a relação entre a carga aplicada (F) e a área da calota esférica impressa no material ensaiado (A_c):

Figura 4.20

Tipos de ensaios de dureza, características de penetração.

Substituindo A_c pela fórmula da área, temos:

$$\mathsf{HB} = \frac{\mathsf{F}}{\pi \cdot \mathsf{D} \cdot \mathsf{P}}$$

Utilizando Pitágoras, determinamos uma relação entre a profundidade (p) e o diâmetro da calota (d). Assim, pode-se chegar à fórmula para o cálculo de HB apresentada a seguir.

Para força em kgf

$$HB = \frac{2 \cdot F}{\pi \cdot D \cdot (D - \sqrt{(D^2 - d^2)})}$$

$$HB = 0,102 \frac{2 \cdot F}{\pi \cdot D \cdot (D - \sqrt{(D^2 - d^2)})}$$

A determinação da espessura mínima ($e_{mín}$) do corpo de prova deverá ser feita em função da profundidade. Para isso encontramos primeiro a profundidade (p) da calota e, em seguida, a espessura mínima (e_{min}):

$$p = \frac{D - \sqrt{\left(D^2 - d^2\right)}}{2} \text{ [mm] } e_{\text{min}} = 10 \cdot p \text{ [mm]}$$

Procedimentos

1. Identificar o tipo de material e o processo de fabricação do cp (corpo de prova).

2. Avaliar o acabamento superficial do cp.

3. Dimensionar cp (cilindricidade e/ou paralelismo).

4. Testar a fixação do CP e acessórios.

5. Fixar **CP** na máquina.

6. Escolher o diâmetro da esfera.

7. Calcular a espessura mínima.

8. Determinar a constante em função do tipo de material a ensaiar.

9. Determinar a carga.

10. Realizar o ensaio, observar velocidade de acionamento e tempo de aplicação da carga.

11. Término do ensaio.

12. Retirar o Cp.

13. Medir o diâmetro da impressão.

14. Calcular o valor da dureza ou consultar tabela.

15. Para fazer outro ensaio devem ser observadas as distâncias entre as impressões.

Execução do ensaio

- O ensaio de dureza Brinell deve ser executado em temperatura ambiente entre 18° C e 28° C.
- É recomendável que se empregue a maior esfera permitida pelo corpo de prova.

- O corpo de prova deve repousar de forma rígida sobre o suporte, a fim de evitar deslocamentos no decorrer do ensaio.
- Escolhidas a força e a esfera de ensaio, o corpo de prova é movimentado através do parafuso em direção ao penetrador, até ser alcançada a posição de ensaio, geralmente indicada no manual de utilização do aparelho. A posição de ensaio se caracteriza por um suave contato entre a superfície de ensaio e a esfera, sem provocar, na primeira, deformação perceptível.
- Em seguida é aplicada a força de ensaio de modo uniforme, sem choques. A totalização deve se dar em um intervalo mínimo de 5 segundos.
- Esperar o tempo para realizar a deformação conforme condições de ensaio.
- Obedecer às distâncias entre calotas e entre bordas da peça e calotas.
- Retirar o corpo de prova e medir os diâmetros das impressões.

Resultados

No relatório de ensaio devem constar:

- número da norma utilizada;
- identificação do corpo de prova;
- dureza Brinell obtida, e valores abaixo de 25 HB devem ser arredondados para 0,1 unidade e valores acima, para 1 unidade;
- designação abreviada das condições de ensaio, ilustrada na figura 4.21;
- posição do local de ensaio, caso seja especificado;
- temperatura de ensaio, caso seja divergente daquela estabelecida nessa norma.

Corpo de prova padrão

Para melhor aproveitamento e maior grau de confiabilidade, a distância entre centros deve ser de $4 \cdot d$, da calota para os ferrosos e $6 \cdot d$ para os outros materiais. A distância da borda do corpo de prova deve ser de 2,5 · d da calota. As figuras 4.22 e 4.23 são exemplos de corpos de prova padrão, para verificar a calibração da máquina.

Para os casos de corpos de prova cilíndricos, o menor diâmetro que pode ser ensaiado é 5 vezes o diâmetro da esfera, devido às imperfeições geradas pelo escor-

Figura 4.21

Designação abreviada das condições de ensaio.

regamento do material em relação à esfera, que causam erro na medição do diâmetro da calota.

Figura 4.22 Aproveitamento máximo do corpo de prova padrão.

Figura 4.23 Corpo de prova padrão.

A figura 4.24 mostra a calota impressa no corpo de prova, e a figura 4.25 mostra a máquina de medição de dureza Brinell.

Figura 4.24 Calota formada após a remoção da carga.

Na utilização do ensaio, a aplicação da relação que calcula HB é desnecessária, pois existem, por exemplo, as tabelas 4.4 e 4.5, que fornecem o valor da dureza Brinell com base nos diâmetros da impressão formada. Embora a dureza Brinell expresse unidades de carga/área, é prática usual a utilização apenas do número representativo da dureza, seguido do símbolo HB (quando representados em kgf/mm²). É também prática usual (ASTM E10-93) adotar as notações HBs, no caso de utilizar a esfera de aço temperado, e HBw, no caso de esfera de carboneto de tungstênio; a escolha depende da faixa de dureza do material a ser submetido ao ensaio. A faixa de tempo de aplicação da carga é em geral de 30 segundos, que pode ser elevado até a 60 segundos para metais mais dúcteis (HB < 60). Nesse acréscimo de tempo, o material deforma-se plasticamente por completo, formando uma calota esférica que não interfere na dureza obtida. Existem normas inglesas que estipulam, para metais duros (HB > 300), um tempo de 15 ou 10 segundos. Tanto a carga quanto o diâmetro da esfera dependem do material, e tais parâmetros devem ser adequados ao tamanho, à espessura e à estrutura interna do corpo de prova.

Dureza Brinell em função do diâmetro da impressão (diâmetro da esfera do penetrador: 10 mm)					
d (mm) HB (F = 3000 kgf) d (mm) HB (F = 3000					
2,75	(495)	4,05	223		
2,80	(477)	4,10	217		
2,85 (461) 4,15 212					

Tabela 4.4

Figura 4.25

Máquina de dureza Brinell.

Dureza Brinell em função do diâmetro da impressão (diâmetro da esfera do penetrador: 10 mm)				
d (mm)	HB (F = 3000 kgf)	d (mm)	HB (F = 3 000 kgf)	
2,90	444	4,20	207	
2,95	429	4,25	201	
3,00	415	4,30	197	
3,05	401	4,35	192	
3,10	388	4,40	187	
3,15	375	4,45	183	
3,20	363	4,50	179	
3,25	352	4,55	174	
3,30	341	4,60	170	
3,35	331	4,65	167	
3,40	321	4,70	163	
3,45	311	4,75	159	
3,50	302	4,80	156	
3,55	293	4,85	152	
3,60	285	4,90	149	
3,65	277	4,95	146	
3,70	269	5,00	143	
3,75	262	5,10	137	
3,80	255	5,20	131	
3,85	248	5,30	126	
3,90	241	5,40	121	
3,95	235	5,50	116	
4,00	229	5,60	111	

Fonte: <http://www.copertec.com/ensaio_dureza.htm>.

Relação entre carga aplicada e diâmetro da esfera para ser utilizada no ensaio Brinell				
Símbolo	Diâmetro da esfera (mm)	Constante Const. = F/D ²	Força F valor nominal	
HBs (HBw) 10/3000	10	30	29,42 kN	3 000 kgf
HBs (HBw) 10/1500	10	15	14,71 kN	l 500 kgf
HBs (HBw) 10/1000	10	10	9,807 kN	l 000 kgf
HBs (HBw) 10/500	10	5	4,903 kN	500 kgf
HBs (HBw) 10/250	10	2,5	2,452 kN	250 kgf
HBs (HBw) 10/125	10	1,25	I,226 kN	125 kgf
HBs (HBw) 10/100	10	I	980,7 N	100 kgf
HBs (HBw) 5/750	5	30	7,355 kN	750 kgf
HBs (HBw) 5/250	5	10	2,452 kN	250 kgf
HBs (HBw) 5/125	5	5	I,226 kN	125 kgf
HBs (HBw) 5/62,5	5	2,5	612,9 N	62,5 kgf
HBs (HBw) 5/31,25	5	1,25	306,5 N	31,25 kgf
HBs (HBw) 5/25	5	I	245,2 N	25 kgf
HBs (HBw) 2,5/187,5	2,5	30	I,839 kN	187,5 kgf
HBs (HBw) 2,5/62,5	2,5	10	612,9 N	62,5 kgf
HBs (HBw) 2,5/31,25	2,5	5	306,5 N	31,25 kgf
HBs (HBw) 2,5/15,62	2,5	2,5	153,2 N	15,62 kgf
HBs (HBw) 2,5/7,82	2,5	1,25	76,61 N	7,82 kgf
HBs (HBw) 2,5/6,25	2,5	1	61,29 N	6,25 kgf
HBs (HBw) 2/120	2	30	I,177 kN	120 kgf
HBs (HBw) 2/40	2	10	392,3 N	40 kgf
HBs (HBw) 2/20	2	5	196,1 N	20 kgf
HBs (HBw) 2/10	2	2,5	98,07 N	10 kgf
HBs (HBw) 2/5	2	1,25	49,03 N	5 kgf

Tabela 4.5

Relação entre carga aplicada e diâmetro da esfera para ser utilizada no ensaio Brinell					
Símbolo	Diâmetro da esfera (mm)	Constante Const. = F/D ²	Força F valor nominal		
HBs (HBw) 2/4	2	L	39,23 N	4 kgf	
HBs (HBw) 1/30	L	30	294,2 N	30 kgf	
HBs (HBw) 1/10	I	10	98,07 N	10 kgf	
HBs (HBw) 1/5	L	5	49,03 N	5 kgf	
HBs (HBw) 1/2,5	L	2,5	24,52 N	2,5 kgf	
HBs (HBw) 1/1,25	L	1,25	12,26 N	I,25 kgf	
HBs (HBw) 1/1	L	L	9,807 N	l kgf	

Fonte: ASTM EI0-93.

Escolha das condições de ensaio

O ensaio padronizado, proposto por Brinell, é realizado com carga de 3000 kgf e esfera de 10 mm de diâmetro, de aço temperado.

Porém, usando cargas e esferas diferentes, é possível chegar ao mesmo valor de dureza, desde que se observem algumas condições.

A determinação da carga a ser aplicada deve manter a relação de impressão (d) dentro dos valores de 0,25 a 0,5 do diâmetro da esfera (D). É considerado valor ideal a média entre os valores. Para a obtenção do valor ideal deve-se seguir o fator de carga constante, de acordo com a tabela 4.5.

Para padronizar o ensaio, foram fixados valores de fatores de carga de acordo com a faixa de dureza e o tipo de material.

A tabela 4.6 mostra os principais fatores de carga utilizados, as respectivas faixas de dureza e indicações.

Tabela 4.6 Principais fatores de carga utilizados e suas respectivas faixas de dureza.

(F/D ²)	Dureza	Materiais	
30	90 a 415 HB	Aços e ferros fundidos	
10	30 a 140 HB	Cobre, alumínio e suas ligas mais duras	
5	15 a 70 HB	Ligas antifricção, cobre, alumínio e suas ligas mais mole	
2,5	até 30 HB	Chumbo, estanho, antimônio e metais patentes	

A tabela 4.7 fornece os diâmetros de esfera mais utilizados e os valores de carga para cada caso, em função do fator de carga escolhido.

Diâmetro da esfera (mm)	$ F (kgf) = 30 $ $ D^2 $	$\begin{array}{c} F \ (kgf) = I0 \\ D^2 \end{array}$	F (kgf) = 5
10	3 000	I 000	500
5	750	250	125
2,5	187,5	62,5	31,25

A tabela 4.8 apresenta a relação entre microconstituintes e dureza Brinell para aços-carbono.

Microconstituintes	Dureza Brinell (HB)
Ferrita	80
Perlita grosseira	240
Perlita fina	380
Martensita	595

Relação entre dureza Brinell e o limite de resistência convencional

Nos casos dos aços, existe uma relação entre dureza e tensão de resistência ($\sigma_r = 0.36 \text{ HB}$), sendo σ_r dado em kgf/mm².

Para durezas maiores que HB = 380, essa expressão não é válida e é necessária a utilização de gráficos.

Segundo estudos experimentais, determinou-se:

"O valor 0,36 vale para aços doces, mas para aços-carbono e aços-ligas tratados termicamente, esse valor cai para 0,34 e 0,33 respectivamente. Para alguns metais não ferrosos, o valor dessa constante é 0,49 para níquel recozido, 0,41 para níquel e latão encruados, 0,52 para cobre recozido, 0,55 para latão recozido e aproximadamente 0,40 para alumínio e suas ligas." (O'NEILL, 1934).

Vantagens e limitação do ensaio de dureza Brinell

Vantagens

• É indicado para ensaios de dureza em materiais não homogêneos por causa do tamanho da impressão;

F (kgf) = 2,5 D ²
250
62,5
15,625

Tabela 4.7

Diâmetro de esferas mais utilizados e seus valores de carga.

Tabela 4.8

Relação entre microconstituintes e dureza Brinell para aços-carbono.

- é indicado também para ensaios de peças não acabadas, como em partes forjadas, fundidas, laminadas ou tratadas termicamente;
- penetrador simples e robusto.

Limitação

Não é aplicável para peças finas (chapas) e materiais muito duros como aço temperado e metal duro, pois a dureza da peça não pode ser igual ou superior à dureza da esfera.

4.5.2 Dureza Rockwell

O segundo tipo de dureza por penetração foi desenvolvido pelo metalurgista norte-americano Stanley Pickett Rockwell, por volta de 1922. A dureza Rockwell, simbolizada por HR, elimina o tempo necessário para a medição, pois o resultado é lido diretamente no visor da máquina de ensaios Rockwell, diminuindo erros de interpretação e de medição. Por sua rapidez, esse ensaio é muito utilizado em linhas de produção.

O ensaio Rockwell pode ser realizado em dois tipos de máquina:

- máquina padrão, que identifica a dureza Rockwell comum;
- máquina mais precisa ou superficial, que identifica a dureza Rockwell em camada superficial, folhas finas ou lâminas.

Ambas as máquinas possuem procedimentos de utilização iguais. A diferença está nos componentes.

Na máquina padrão, cada divisão da escala equivale a 0,02 mm. Na máquina mais precisa ou superficial, cada divisão da escala equivale a 0,01 mm.

Além dessas máquinas existem também equipamentos digitais que apresentam o valor da dureza diretamente no visor.

Figura 4.26 Máquina de medição de dureza Rockwell.

Descrição do processo

Os penetradores usados no equipamento são do tipo esférico (esfera de aço temperado) ou cônico (cone de diamante com 120° de conicidade).

Em ambos os penetradores a pré-carga é aplicada para fixar o e garantir o perfeito contato com o penetrador. Depois de apli carga maior, a profundidade é dada no visor da máquina em fe de dureza. A leitura deve ser feita em uma escala apropriada a carga, como informado nas tabelas 4.9 e 4.10.

As leituras para cada tipo de penetrador em equipamentos anal feitas:

- na escala externa do mostrador de cor preta no penetrador côr
- na escala vermelha no penetrador esférico.

Nos equipamentos com mostrador digital, uma vez fixada a esc valor é dado diretamente na escala determinada.

Escala	Cor da escala	Carga maior (kgf)	Penetrador
A	Preta	60	diamante cone 120°
с	Preta	150	diamante cone 120°
D	Preta	100	diamante cone 120°
В	vermelha	100	Esfera aço I,5875 mm
E	vermelha	100	esfera aço 3,175 mm
F	vermelha	60	esfera aço 1,5875 mm
G	vermelha	150	esfera aço I,5875 mm
н	vermelha	60	esfera aço 3,175 mm
К	vermelha	150	esfera aço 3,175 mm

e).	
o corpo de prova icada e retirada a forma de número io penetrador e à	
ógicos devem ser	
nico de diamante;	
ala a ser usada, o	Tabela 4.9 Escalas de dureza Rockwell normal e aplicações.
Faixa de utilização	Campo de aplicação
20 a 88 HRA	Carbonetos, folhas de aço com fina camada superficial endurecida
20 a 70 HRC	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100
20 a 70 HRC 40 a 77 HRD	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100 Chapas finas de aço com média camada endurecida
20 a 70 HRC 40 a 77 HRD 20 a 100 HRB	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100 Chapas finas de aço com média camada endurecida Ligas de cobre, aços brandos, ligas de alumínio, ferro maleável etc.
20 a 70 HRC 40 a 77 HRD 20 a 100 HRB 70 a 100 HRE	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100 Chapas finas de aço com média camada endurecida Ligas de cobre, aços brandos, ligas de alumínio, ferro maleável etc. Ferro fundido, ligas de alumínio e de magnésio
20 a 70 HRC 40 a 77 HRD 20 a 100 HRB 70 a 100 HRE 60 a 100 HRF	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100Chapas finas de aço com média camada endurecidaLigas de cobre, aços brandos, ligas de alumínio, ferro maleável etc.Ferro fundido, ligas de alumínio e de magnésioLigas de cobre recozidas, folhas finas de metais moles
20 a 70 HRC 40 a 77 HRD 20 a 100 HRB 70 a 100 HRE 60 a 100 HRF 30 a 94 HRG	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100 Chapas finas de aço com média camada endurecida Ligas de cobre, aços brandos, ligas de alumínio, ferro maleável etc. Ferro fundido, ligas de alumínio e de magnésio Ligas de cobre recozidas, folhas finas de metais moles Ferro maleável, ligas de cobre-níquel-zinco e de cobre-níquel
20 a 70 HRC 40 a 77 HRD 20 a 100 HRB 70 a 100 HRE 60 a 100 HRF 30 a 94 HRG 80 a 100 HRH	Aço, titânio, aços com camada endurecida profunda, materiais com HRB > 100 Chapas finas de aço com média camada endurecida Ligas de cobre, aços brandos, ligas de alumínio, ferro maleável etc. Ferro fundido, ligas de alumínio e de magnésio Ligas de cobre recozidas, folhas finas de metais moles Ferro maleável, ligas de cobre-níquel-zinco e de cobre-níquel

Escala	Cor da escala	Carga maior (kgf)	Penetrador	Faixa de utilização	Campo de aplicação
15 N	preta	15	diamante cone 120°	65 a 90 HR 15 N	Uso em aplicações similares às escalas HRC, HRA, HRD
30 N	preta	30	diamante	40 a 80 HR 30 N	Uso em aplicações similares às escalas HRC, HRA, HRD
45 N	preta	45	diamante	35 a 70 HR 45 N	Uso em aplicações similares às escalas HRC, HRA, HRD
15T	vermelha	15	esfera aço I,5875 mm	50 a 94 HR 15 T	Uso em aplicações similares às escalas HRB, HRF, HRG
30 T	vermelha	30	esfera aço I,5875 mm	10 a 84 HR 30 T	Uso em aplicações similares às escalas HRB, HRF, HRG
45 T	vermelha	45	esfera aço 1,5875 mm	10 a 75 HR 45 T	Uso em aplicações similares às escalas HRB, HRF, HRG

Tabela 4.10

Figura 4.27

Cargas de acordo com os

tipos de dureza Rockwell.

Escalas de dureza Rockwell superficial e aplicações.

Escala de dureza

A dureza Rockwell comum ou normal emprega várias escalas com diferentes graus de penetração. Um número alto de dureza implica uma pequena profundidade de penetração.

A dureza Rockwell superficial emprega várias escalas e é usada para corpos de prova de pequenas espessuras, como lâminas e materiais que sofreram algum tipo de tratamento superficial, por exemplo, cementação.

Nos ensaios de dureza Rockwell normal utiliza-se uma pré-carga de 10 kgf, e a carga maior pode ser de 60, 100 ou 150 kgf. Nos ensaios de dureza Rockwell superficial a pré-carga é de 3 kgf e a carga maior pode ser de 15, 30 ou 45 kgf.

Essas escalas não têm relação entre si. Por isso, não faz sentido comparar a dureza de materiais submetidos a ensaio de dureza Rockwell utilizando escalas diferentes. Ou seja, um material ensaiado em uma escala só pode ser comparado a outro material ensaiado na mesma escala.

Profundidade de penetração

A profundidade que o penetrador atinge durante o ensaio é importante para definir a espessura mínima do corpo de prova. De modo geral, a espessura mínima deve ser 10 vezes a profundidade atingida pelo penetrador.

Entretanto, não há meios de medir a profundidade exata atingida pelo penetrador no ensaio de dureza Rockwell.

Para saber a profundidade mínima em mm do penetrador, utilizam-se as seguintes fórmulas empíricas:

- 1) Para penetrador de diamante: HR comum \rightarrow profundidade = 0,002 · (100 – HR) HR superficial \rightarrow profundidade = 0,001 · (100 - HR)
- 2) Para penetrador esférico: HR comum \rightarrow profundidade = 0,002 · (130 – HR) HR superficial \rightarrow profundidade = 0,001 · (130 - HR)

Para melhor aproveitamento e maior grau de confiabilidade do ensaio Rockwell, o corpo de prova deve possuir distância entre centros da calota igual a (3.p) e bordas (2,5 · p), e sua espessura deve ser 10 vezes a maior profundidade da impressão.

Preparação da amostra

A superfície da amostra precisa ser preparada para eliminar irregularidades que possam ocasionar erros. A carga menor, porém, serve também para minimizar os efeitos das irregularidades. A primeira leitura deve ser desprezada, porque a amostra serve apenas para ajuste do penetrador. Se a superfície não é plana, deve ser feita a correção dos valores, pois a dureza Rockwell analisa a profundidade de penetração e não a área. A correção deve ser feita de acordo com as normas da E-18 da ASTM, MB 358 da ABNT.

Em materiais desconhecidos deve-se realizar o ensaio partindo de escalas mais altas para as escalas mais baixas, para evitar danos no penetrador.

Vantagens e limitações do ensaio de dureza Rockwell

Vantagens

- Tempo reduzido para realização do teste e rapidez de leitura;
- possibilidade de automatização;

- baixo custo do equipamento devido à ausência de componentes ópticos;
- não há influência do operador, pois a leitura de dureza é realizada diretamente no equipamento.

Limitações

- Não utiliza escala única de dureza;
- penetrador de diamante sujeito a danos, podendo causar medidas erradas;
- influência do tipo de penetrador no valor da dureza.

Apresentação dos resultados

Os resultados são apresentados como mostra a figura 4.28.

Figura 4.28 Forma de apresentação dos resultados. 40 HRC Código referente a escala utilizada Código referente a dureza Rockwell Valor da dureza

4.5.3 Dureza Vickers

Introduzida em 1925 por Smith e Sandland, tem o nome Vickers porque a máquina mais conhecida para operar a dureza foi produzida pela empresa Vickers-Armstrong. A dureza Vickers possibilita medir qualquer valor de dureza, desde os materiais mais duros até os mais moles.

O penetrador é uma pirâmide de base quadrada, com ângulo de 136° entre as faces opostas, como mostra o esquema da figura 4.29.

298

Esse ângulo possui valores semelhantes aos da dureza Brinell (relação ideal d/D da Brinell, sendo 0,375 dessa relação correspondente a um ângulo de 136°). Sendo um diamante, o penetrador é praticamente indeformável e independe da carga aplicada.

O valor de dureza é o mesmo para materiais homogêneos. Para esse tipo de dureza a carga varia de 1 a 100 ou 120 kgf. Por questão de padronização, as cargas recomendadas são: 1, 2, 3, 4, 5, 10, 20, 30, 40, 60, 80, 100, 120 kgf.

Para cargas muito altas (acima de 120 kgf), em vez do penetrador de pirâmide de diamante, pode-se também usar esferas de aço temperado de 1 mm ou 2 mm de diâmetro no mesmo equipamento. Nesse caso, o ensaio feito na máquina Vickers é o de dureza Brinell.

Para aplicações específicas, voltadas principalmente para superfícies tratadas (cementação, têmpera), ou para a determinação de dureza de microconstituintes individuais de uma microestrutura, utiliza-se o ensaio de microdureza Vickers.

O ensaio de microdureza Vickers envolve o mesmo procedimento prático que o ensaio Vickers, porém usa cargas menores que 1 kgf. A carga, por exemplo, pode ter valores muito pequenos, como 10 gf.

A mudança de carga é necessária para obter uma impressão regular que é medida no visor do equipamento, onde as diagonais L_1 e L_2 formam a média L, utilizada na equação a seguir.

Figura 4.30 Microdureza Vickers.

Determinação da dureza Vickers por meio de cálculos

A equação para o cálculo da dureza Vickers é dada por:

$$HV = \frac{\text{carga}}{\text{área da superfície piramidal}} = \frac{2Q \operatorname{sen} \frac{136^{\circ}}{2}}{L^{2}} \Rightarrow$$

$$\Rightarrow HV = \frac{1,8544 \cdot F}{L^2}$$

em que F é dado em kgf ou N, L em mm e a dimensão da dureza em N/mm² ou kgf/mm².

A dureza Vickers fornece, assim, uma escala contínua (de HV = 5 até HV =1000 kgf/mm²) para a carga usada. Para as muito pequenas, pode variar de uma carga para outra. Nesse caso é necessário mencionar a carga usada toda vez que ensaiar o metal. A área deve ser medida com exatidão e, por esse motivo, utiliza-se um microscópio acoplado ao visor da máquina para determinar as diagonais L com precisão de 1 mícron (aproximadamente).

As figuras 4.31 e 4.32 mostram, respectivamente, o visor da máquina e a máquina.

Figura 4.3 l Visor da máquina de ensaios Vickers.. L

Defeitos da impressão

Uma impressão ideal, no ensaio Vickers, deve apresentar os lados retos. Entretanto, podem ocorrer defeitos, como esquema indicado na figura 4.33. Esses defeitos são devidos ao afundamento ou à aderência do metal em volta das faces do penetrador.

Figura 4.32 Máquina de ensaios Vickers.

Figura 4.33

Impressões produzidas no ensaio de dureza Vickers: a) impressão perfeita; b) impressão com afundamento;

c) impressão com aderência.

A dureza Vickers é calculada com relação às diagonais da impressão. Os defeitos causam variação em relação à dureza real: menores quando houver aderência e maiores quando houver afundamento.

Para solucionar esse problema, o valor da carga deve ser alterado. Em geral, nos casos de impressão com afundamento aumenta-se a carga e nos casos de impressão com aderência diminui-se a carga.

Vantagens e limitações do ensaio Vickers

Vantagens

- Praticamente não há limite de uso em função da dureza da amostra;
- possibilidade de realização de ensaios em chapas finas, amostras pequenas, tubos de paredes finas, medições de camadas finas;
- impressões reduzidas;
- não sofre influência em função da carga utilizada (carga de ensaio > 5 kgf).

Limitações

- A superfície da amostra deve ter preparação adequada;
- consumo de tempo para realização das medidas das diagonais;
- penetrador sensível a danos;
- pequenas impressões podem ser influenciadas por desvios de forma do penetrador ou pela preparação da superfície;
- sensível a vibrações, especialmente em microdureza;
- influência do operador sobre o valor da dureza.

Apresentação dos resultados

Figura 4.34 Apresentação dos resultados do ensaio Vickers.

Os resultados são apresentados como indicado na figura 4.34.

4.6 Impacto

O ensaio de impacto é um dos primeiros e, até hoje, o mais utilizado no estudo da fratura frágil de metais. Trata-se de um ensaio dinâmico, aplicado principalmente em materiais empregados em baixa temperatura. Nesse ensaio, os corpos de prova padronizados apresentam um entalhe onde se dá a ruptura no momento de aplicação da carga, desferida por um martelo pendular.

Nos equipamentos mostrados nas figuras 4.35 e 4.36 existe uma escala que registra a quantidade de energia absorvida pelo corpo no momento do impacto. O valor registrado determina se o corpo é dúctil ou frágil: mais frágil se absorver menos energia e mais dúctil se absorver mais energia antes da ruptura.

O ensaio possui limitações, pois não se pode medir com exatidão as tensões envolvidas no momento do impacto. As tensões podem variar de acordo com o material ensaiado e também com sua estrutura interna.

No entanto, esse ensaio torna-se útil na comparação de dois materiais ensaiados nas mesmas condições, principalmente quando se pesquisa o material a ser utilizado em ambientes expostos a variações de temperatura e tensões de trabalho. No ensaio de materiais de média e baixa resistência, os resultados apresentados têm variação bastante significativa, especialmente em condições próximas às da temperatura de transição.

O ensaio de impacto identifica materiais que têm capacidade de absorver energia e dissipá-la, para que a ruptura não aconteça, ou seja, materiais que apresentam tenacidade. Essa propriedade, que está diretamente relacionada à fase plástica dos materiais, quando o material se mostra resistente, possui boas características de alongamento para suportar esforços consideráveis de tração, torção ou flexão, sem se romperem. São características apresentadas pelas ligas metálicas dúcteis.

Contudo, mesmo nessas condições, verifica-se que materiais dúcteis podem se romper de forma frágil e que essa ruptura pode ser influenciada pela sensibilidade do material à alta velocidade do choque.

A formação de uma fratura frágil no material pode ser altamente perigosa na prática, causar a falência repentina do material ou, nos ensaios de impacto, gerar interpretações erradas dos dados. Tem como principal agravante as microtrincas e trincas, que fazem com que as tensões elevadas sejam concentradas nessa região da peça ou corpo de prova e mudem consideravelmente o comportamento do material dúctil.

Os resultados obtidos com vários corpos de prova de um mesmo metal são bastante diversos. Para chegar a conclusões confiáveis, é recomendável repetir o ensaio em pelo menos em três corpos de prova diferentes.

A energia necessária para fraturar o corpo de prova é dada por:

 $\mathsf{E} = \mathsf{G} (\mathsf{h} - \mathsf{h}') [\mathsf{Nm}]$

em que:

E = energia em [Nm] G = peso do martelo em [N] h = posição inicial do martelo [m] h' = posição final do martelo [m]

Figura 4.35 Esquema da máquina de ensaio.

Figura 4.36 Máquina de ensaio Charpy.

304

4.6.1 Corpos de provas

De acordo com a norma norte-americana E-23 da ASTM, os corpos de prova para os ensaios Charpy (indicados na figura 4.37) são classificados, de acordo com o tipo de entalhe, da seguinte maneira:

- tipo A (entalhe em V) \rightarrow para materiais de menor resistência;
- tipo B (entalhe "Ferradura") → para materiais de média resistência;
- tipo C (entalhe em U) \rightarrow para materiais de maior resistência.

O corpo de prova para o ensaio de impacto tipo Izod (figura 4.38) possui a seção quadrada de 10 mm de lado e é igual ao ensaio Charpy, com variação no comprimento, que é de 75 mm, e na posição do entalhe, que muda para a distância de 28 mm de uma das extremidades. É característica desse ensaio somente o entalhe em V.

De acordo com a norma E-23 da ASTM, para ensaios em ferro fundido ou metais fundidos, o corpo de prova não é entalhado, conforme mostra figura 4.39.

Caso não seja possível retirar um corpo de prova nas dimensões padronizadas por causa do tamanho da peça ou do tipo de material, a norma citada anteriormente contempla um corpo de prova de dimensões reduzidas, lembrando que os

cia; sistência; cia.

Figura 4.37

Corpos de prova tipo Charpy (recomendados pela ASTM e ABNT).

Figura 4.38

Corpos de prova tipo Izod (recomendados pela ASTM e ABNT).

resultados dos ensaios obtidos com esses corpos somente podem ser comparados a resultados obtidos com corpos de prova da mesma dimensão.

Figura 4.39 Corpos de prova para ferro

fundido e fundidos sob pressão (recomendados pela ASTM e ABNT).

Para a realização do ensaio Charpy, o corpo de prova é apoiado livremente na máquina de ensaio (não é fixado), e a distância entre os apoios é de 40 mm, conforme mostra a figura 4.40.

No ensaio de impacto tipo Izod, o corpo de prova é engastado, deixando que o centro do entalhe se alinhe à superfície de engaste, como indicado à direita na figura 4.40.

Tanto no ensaio Charpy quanto no ensaio Izod existe o impacto do martelo no corpo de prova. No ensaio Charpy, o corpo de prova é posicionado de maneira que o impacto do martelo ocorra na face oposta ao entalhe. No ensaio Izod, o corpo de prova é colocado de maneira a permitir o impacto na mesma face do entalhe.

Figura 4.40

Diferença quanto ao impacto do martelo (recomendado pela ASTM e ABNT).

4.6.2 Corpo de prova e sentido de laminação

A construção do corpo de prova deve seguir alguns critérios que levam em consideração o sentido da laminação e, por consequência, a direção das fibras do material. A posição em que o corpo de prova for retirado do material a ser ensaiado fará com que tenha resultados diferentes para o mesmo ensaio. A influência do sentido de laminação para o mesmo material é indicado na figura 4.41.

Para o ensaio apresentado a seguir (figura 4.42), nota-se que, em determinadas coordenadas, uma variação pequena de temperatura tem influência significativa na capacidade de energia absorvida.

4.7 Dobramento

O ensaio de dobramento permite avaliar a ductilidade do material de forma qualitativa. Portanto, não fornece valor numérico. Pode ser realizado em máquina de ensaio universal ou em prensa comum, obviamente com algumas adaptações. O corpo de prova é apoiado em dois roletes, distanciados de acordo com o tamanho do corpo. Em seguida, um cutelo exerce um esforço no centro do material ensaiado, de modo que o elemento possa fletir, dobrando-se de acordo com a carga aplicada e o ângulo de severidade α , que geralmente é de 90°, 120° ou 180°, como mostram as figuras 4.43 e 4.44.

CAPÍTULO 4

Figura 4.41

Efeito de direcionalidade nas curvas de impacto de corpos de prova Charpy retirados de três locais diferentes em um aço doce.

Figura 4.42

Efeito da temperatura em aço 4340: a) de baixa resistência; b) de média resistência; c) de alta resistência.Vêse também que aparece a porcentagem de fratura fibrosa (dúctil).

O ensaio termina quando o ângulo α é atingido. Logo em seguida, verifica-se o material, que não deve apresentar fissuras ou rachaduras na zona tracionada.

Os corpos de prova a serem ensaiados devem ter forma cilíndrica retilínea, tubular, retangular ou quadrada.

Quanto menor o diâmetro do cutelo, mais severo é o ensaio. Existem materiais que se dobram sem o cutelo, em um processo denominado dobramento sobre si mesmo.

Figura 4.43 Severidade do ensaio de acordo com ângulo α .

As fibras internas do material ensaiado são solicitadas de maneira a se esticarem ou se comprimirem, conforme podemos observar na figura 4.44. As fibras do lado da força aplicada são de compressão, e as fibras em posição oposta são de tração. Existe uma posição intermediária do material na qual a fibras não estão sujeitas nem a compressão nem a tração. Essa posição é denominada linha neutra. A localização dessa linha (C_1 e C_2 na figura) varia de acordo com o raio de curvatura.

Figura 4.44 Análise das fibras do material.

4.7.1 Tipos de processo de dobramento

Há duas variantes no processo de dobramento:

• Dobramento livre: obtido pela aplicação da força nas extremidades do corpo de prova, sem aplicação de força no ponto máximo de dobramento, como no exemplo indicado na figura 4.45.

• Dobramento semiguiado: ocorre em uma região determinada pela posição do cutelo, como indicado na figura 4.46.

Esses ensaios são utilizados para barras destinadas à armadura de proteção e baseiam-se nas especificações EB-780 e métodos MB-782 da ABNT.

4.7.2 Dobramento em barras para construção civil

Esse tipo de ensaio é muito útil para a área da construção civil devido às solicitações a que as barras são submetidas na prática, exigindo resistência do material sem que apresente fissuras ou rachaduras. O ensaio é realizado com ângulo de severidade α de 180° e, para cada categoria de barras, é estipulado um diâmetro de cutelo.

As barras são divididas nas seguintes categorias: CA-25, CA-32, CA-40, CA-50 e CA-60, de acordo com a especificação brasileira EB-1980. O número da categoria refere-se ao valor mínimo do limite de escoamento que a barra deve possuir, em kgf/mm².

4.7.3 Ensaio de dobramento em corpo de prova soldado

O ensaio de dobramento em corpos de prova soldados tem a finalidade de avaliar ou qualificar profissionais e é também usado na aprovação de processos na área de soldagem. Nesses casos emprega-se o ensaio de dobramento guiado. No caso específico de avaliação da qualidade da solda empregada no processo utiliza-se o método de dobramento livre.

Figura 4.46

Figura 4.45

Corpo de prova apoiado para dobramento livre.

Posição do cutelo nos dobramentos semiguiados.

Os corpos de prova para o ensaio deverão ser retirados de peças soldadas em que o cordão de solda tenha boa qualidade. Aplica-se o dobramento livre e de acordo com normas específicas. A largura do corpo de prova deverá ter, no mínimo, o valor da espessura mais a metade.

O ângulo de severidade α do ensaio é sempre de 180°, de modo que o cutelo não toque a região soldada no início do ensaio, evitando a concentração de tensões indesejadas.

Os resultados são avaliados verificando-se a existência ou não de fendas, fissuras, rachaduras ou rupturas na zona tracionada do corpo de prova. A posição da retirada dos corpos de prova é sempre indicada nas normas técnicas, que prescrevem também que os ensaios de tração sempre devem acompanhar os corpos de prova para o dobramento.

Para calcular o alongamento da área soldada, utiliza-se a equação indicada na figura 4.47.

Figura 4.47 Cálculo do alongamento da área soldada.

4.8 Flexão

O ensaio de dobramento aplicado em materiais frágeis é denominado ensaio de flexão. Materiais como ferro fundido cinzento, aços-ferramentas ou carbonetos sinterizados são ensaiados por dobramento transversal, que determina sua resistência e ductilidade, como indicado na figura 4.48.

O corpo de prova para o ensaio é preferencialmente circular ou retangular para simplificar os cálculos. Caso o corpo de prova tenha forma irregular, deve-se fazer correções de acordo com a norma A-438 da ASTM. Nesse tipo de ensaio, podemos obter divergências na medição de até 25% entre ensaios. Dessa forma, torna-se necessária a realização de diversos ensaios até que se obtenha um valor médio confiável.

Figura 4.48 Ensaio de dobramento--flexão em materiais frágeis.

O ensaio de flexão fornece o valor do módulo de ruptura (M_r) ou módulo de resistência ao dobramento, que pode ser calculado utilizando a equação:

$$M_r = \frac{M \cdot c}{J}$$

em que:

Como:

$$M = \frac{P \cdot L}{4}$$

$$J = \frac{\pi \cdot d^4}{64} \rightarrow \text{para seção circular, em que } d \text{ é o diâmetro}$$

$$J = \frac{b \cdot h^3}{12} \rightarrow \text{para seção retangular de base } b \text{ e altura } h$$

deduz-se:

$$M_{r} = \frac{2,55P \cdot L}{d^{3}} \rightarrow \text{para seções circulares}$$
$$M_{r} = \frac{3P \cdot L}{2b \cdot h^{2}} \rightarrow \text{para seções retangulares}$$

O ensaio de flexão permite que seja medida a deformação vertical da viga (corpo de prova) em função da força aplicada. Essa deformação é comumente denominada flecha. A medida é obtida por um defletômetro, de forma que é possível traçar um diagrama carga-flexão para diversos tipos de materiais, como indicado na figura 4.49. A flecha também varia com o tipo de perfil e dureza do material ensaiado, como pode ser observado na figura 4.50.

Figura 4.49

Diagrama carga-flexão para três diferentes materiais.

Figura 4.50

Variação da flecha em função do perfil e da dureza do material ensaiado.

A rigidez do material também pode ser determinada pela equação:

$$\mathsf{E} = \frac{\mathsf{M} \cdot \mathsf{L}}{\mathsf{3J}} \text{ em que:}$$

E = rigidez na flexão (kgf/mm2)

 $M = momento de dobramento (kgf \cdot mm)$

L = distância entre apoios (mm)

J = momento de inércia da seção (mm4)

J = deflexão angular (radianos)

4.9 Embutimento

O ensaio de embutimento tem grande aplicação na área metalúrgica, automobilística etc. Essas áreas possuem diversas peças produzidas por processos de estampagem.

Para a conformação das peças são necessárias ferramentas (matrizes e punções) que, em alguns casos, podem ter cinco estágios ou mais, isto é, quantas ferramentas serão utilizadas para obter o produto final. Para essa conformação gradual é preciso um material bastante dúctil. A figura 4.51 mostra esquema de uma ferramenta de estampagem.

Durante o processo de estampagem, existem ocorrências de defeitos nos produtos que podem estar relacionados às ferramentas, máquinas e manuseio envolvidos no processo. Além disso, há defeitos relacionados ao material que devem estar dentro de limites especificados pelo laboratório de ensaio. Os defeitos não podem afetar a qualidade do produto no que diz respeito à resistência para peças de estrutura visual e de tato para peças de acabamento.

A estampabilidade, ou capacidade de estampagem, é definida em ensaios de embutimentos adronizados chamados Erichsen (figura 4.52) e Olsen (figura 4.53). Esses ensaios são de natureza qualitativa, realizados no recebimento do lote, e indicam o desempenho que o material apresentará durante o processo produtivo. Se ocorrerem problemas durante a produção, novos ensaios serão necessários para verificar a homogeneidade do lote.

Os ensaios Erichsen e Olsen diferenciam-se pelo diâmetro da esfera e do corpo de prova utilizado.

Nos dois casos, o ensaio consiste em forçar uma esfera, acionada por um pistão hidráulico, de encontro a um corpo de prova extraído de uma chapa metálica, preso por um dispositivo de fixação. O esforço produz, sob a

Figura 4.52

Esquema do ensaio de embutimento Erichsen (NBR 5902).

Figura 4.53

Esquema do ensaio de embutimento Olsen (NBR 5902).

forma de uma elevação (calota esférica) na superfície da chapa, uma deformação plástica que progride à medida que a esfera avança. O ensaio termina quando ocorre a ruptura da chapa, com um som característico (estalo). O índice de estampabilidade, dado pela altura da calota esférica formada, depende, além da constituição metalúrgica da chapa, também de sua espessura. Quanto maior a altura da calota esférica, maior a estampabilidade da chapa. Os fabricantes costumam classificar chapas de aço e de outros metais não ferrosos (latão, alumínio) para estampagem segundo o índice de estampabilidade e espessura.

Recomenda-se que a carga de fixação da chapa seja de 10000 N. A chapa e o corpo esférico devem ser untados com um composto à base de graxa, grafite e óleo mineral.

Depois de realizado o ensaio, a altura h, que é a deformação causada no corpo de prova pela esfera, é denominada índice Erichsen de embutimento (ver figura 4.54).

As máquinas de ensaio para embutimento variam em dimensão, conforme as espessuras das chapas que podem ser ensaiadas, variam também caso a máquina seja manual ou automática.

4.10 Fadiga

Quando um metal está sujeito a ciclos repetidos de tensões ou deformações específicas, é esperado que se rompa em um número específico de ciclos. Esse processo é denominado fadiga e é usualmente responsável por um grande percentual de falhas em elementos sujeitos a carregamentos cíclicos. Em todos os casos, a fadiga ocorre com um nível de tensão abaixo da tensão de escoamento do material.

Aparentemente, essa falha ocorre pelo fato de existirem regiões microscópicas, em geral na superfície do elemento, onde a tensão localizada torna-se muito maior do que a tensão média atuante ao longo da seção transversal do elemento. Sendo cíclica, essa tensão provoca o aparecimento de microtrincas, que causam um aumento da tensão no entorno, fazendo com que se estendam para o interior do material. Eventualmente, a área da seção transversal do

elemento é reduzida a ponto de não mais resistir à carga e resulta na fratura súbita do elemento. Assim, o material, originalmente conhecido como dúctil, comporta-se como frágil.

Limite de resistência à fadiga: tensão abaixo da qual o material, sendo carregado por um número infinito de ciclos, nunca se rompe.

O limite de resistência à fadiga é determinado colocando-se um corpo de prova em um equipamento que aplica uma solicitação de flexão enquanto o corpo gira. A consequência disso é as fibras do corpo de prova sofrerem solicitações variáveis ao longo de uma volta completa. Uma fibra do material começa, por exemplo, com solicitação de tração e, ao girar 90°, a solicitação zera. Girando mais 90°, a solicitação inverte seu sentido e passa a solicitar o material por compressão; mais 90° e zera novamente; e, por fim, mais 90° e volta à solicitação de tração. Dessa forma, temos um carregamento como indicado no gráfico *c* da figura 4.55.

No caso de flexão alternada, no gráfico a, temos um ciclo em que as tensões máximas e mínimas são iguais e de sinais opostos; e para o caso indicado no gráfico b todas as tensões são positivas, e as tensões máximas e mínimas são desiguais. Existem diversos tipos de tensão (stress) possíveis para os ensaios de fadiga.

Nos gráficos de N-S (número de ciclos em função da tensão), como mostra a figura 4.56, as tensões a que o corpo está submetido estão representadas por:

 $\sigma_{máx} = tensão máxima;$

- $\sigma_{mín}$ = tensão mínima;
- $\sigma_{\rm r}$ = diferença entre $\sigma_{\rm máx}$ e $\sigma_{\rm mín}$;
- σ_a = amplitude de tensão alternativa (é a metade de σ_r);
- σ_m = tensão média (é a média algébrica entre $\sigma_{máx}$ e $\sigma_{mín}$).

Figura 4.55

Ciclos regulares de tensões: a) tensão reversa; b) tensão repetida (campo de tração); c) tensão repetida (campos de tração-compressão).

Figura 4.56

Exemplos práticos de algumas curvas N-S. O ensaio é realizado de diversas maneiras. De acordo com o tipo de solicitação que se deseja aplicar são utilizados corpos de prova específicos, como mostra a figura 4.57.

Os principais tipos são:

- torção;
- tração-compressão;
- flexão;
- flexão rotativa.

O acabamento superficial de componentes submetidos a esforços repetitivos é significante, pois, devido às concentrações de tensões, a maioria dos defeitos ou falências se inicia nas imperfeições de superfície. Assim, com o polimento podemos melhorar a resistência do material à fadiga.

Além disso, outro processo, conhecido como *shot speening*, consegue melhorar a vida em fadiga do material. Ele consiste no bombardeamento da superfície do material com pequenas esferas metálicas (granalhas), as quais geram tensões residuais de compressão, amenizando as tensões de tração da solicitação cíclica e amplificando a resistência à fadiga. Esse processo consegue aumentar em até 15% a resistência às tensões de tração e dobrar a vida em fadiga de um componente. Essa técnica é muito utilizada nas indústrias automobilística e aeronáutica. Outras técnicas também usadas são mostradas na tabela 4.11.

	Aço (tempe trefilado rota),4%C rado e o (flexão tiva)	Aço 0, recozido rota	02%C 9 (flexão tiva)	Aço 0, (cantil rotat	33%C éver ivo)	Aço SAE 1045 (flexão rotativa	
Acabamento	Limite de fa- diga (kgf/mm²)	% de desvio do acaba- mento padrão	Limite de fadiga (kgf/ mm²)	% de desvio do acaba- mento padrão	Limite de fa- diga (kgf/mm²)	% de desvio do acaba- mento padrão	Limite de fadiga (kgf/ mm²)	% de desvio do acaba- mento padrão
Alto polimento longitudinal	35,5	103	-	-	29,0	102	21,7	100
Polimento padrão (pó de esmeril fino)	34,3	100	18,2	100	28,3	100	21,7	100
Esmeril grosso	-	-	-	-	27,3	100	-	-
Esmerilhado	31,5	93	-	-	-	-	-	-

Figura 4.57

Desenhos esquemáticos de alguns tipos de corpos de prova: a) para ensaio de fadiga por flexão rotativa ou qualquer outro carregamento axial; b) tipo paralelo, para flexão rotativa; c) retirado de lâminas; d) retirado de chapas finas; e) retirado de chapas grossas. O esquema **b** também serve para fadiga por torção, e os esquemas *c*, *d*, *e* podem ser usados para fadiga por torção-compressão.

Tabela 4.11

Influência do acabamento superficial no limite de fadiga.

	Aço (tempe trefilado rota),4%C rado e o (flexão tiva)	Aço 0,02%C recozido (flexão rotativa)		Aço 0,33%C (cantiléver rotativo)		Aço SAE 1045 (flexão rotativa)	
Acabamento	Limite de fa- diga (kgf/mm²)	% de desvio do acaba- mento padrão	Limite de fadiga (kgf/ mm²)	% de desvio do acaba- mento padrão	Limite de fa- diga (kgf/mm²)	% de desvio do acaba- mento padrão	Limite de fadiga (kgf/ mm²)	% de desvio do acaba- mento padrão
Lima fina	-	-	-	-	26,9	95	26,6	90
Torneamento fino	30,1	88	16,8	92	25,5	95	26,6	90
Torneamento grosso	29,0	85	16,1	88	-	-	-	-
Lima bastarda	-	-	-	-	24,8	88	-	-
Lima grossa	-	-	-	-	23,0	81	-	-

Fonte: SOUZA, 1982.

É muito comum testar a vida útil dos componentes e conjuntos mecânicos. Existem dispositivos especiais que simulam seu funcionamento sob condições de uso. Os dispositivos são na maioria das vezes criados dentro da própria empresa com a finalidade de desenvolvimento e certificação.

4.11 Torção

O ensaio de torção é indispensável em peças que sofrem esforços de giro em torno do próprio eixo, como molas em espiral, barras de torção, brocas e certos tipos de aços-ferramentas, conforme mostra a figura 4.58.

O procedimento de ensaio de torção é simples de realizar, mesmo assim pode-se sempre substituir esse ensaio pelo de tração, uma vez que fornece as mesmas propriedades e com maior facilidade de cálculo.

Figura 4.58 Análise dos esforços de torção.

Além disso, o corpo de prova para o ensaio de torção necessita de melhor preparação, fator que o torna inviável para uso rotineiro. Para a determinação das propriedades fornecidas no ensaio de torção, tais como no ensaio de tração, também são gerados gráficos de tensão-deformação. O ensaio de torção apresenta maiores vantagens quando aplicado aos materiais frágeis.

A máquina de ensaio por torção mede a variação angular de um ponto específico do corpo de prova em relação a um ponto fixo no dispositivo de ensaio. Quando utilizado um troptômetro, consegue ainda medir o encurtamento do corpo de prova.

Os corpos de prova, quando usados no lugar das peças, são cilindros maciços ou cilindros tubulares, com estrangulamento na região central, como indicado em desenho esquemático na figura 4.59. A geometria cilíndrica do corpo de prova favorece a aplicação da teoria elementar de torção, em que a tensão tem seu valor máximo na periferia do corpo e seu valor tende a zero à medida que se aproxima do centro.

Para as equações a seguir, admite-se que haja proporcionalidade entre as tensões e as distâncias da periferia ao centro do corpo de prova.

em que:

Ou

 $\tau = -$

$$\begin{split} \mathsf{M}_t &= \frac{\tau \cdot \mathsf{J}_p}{\mathsf{r}} & \tau = \text{tensão de cisalhamento (kgf/mm²)} \\ \mathsf{M}_t &= \text{momento de torção (kgf \cdot mm)} \\ \mathsf{Ou} & \mathsf{r} = \text{raio da seção transversal (mm)} \\ \tau &= \frac{\mathsf{M}_{t \cdot \mathsf{r}}}{\mathsf{J}_p} & \mathsf{J}_p = \text{momento polar de inércia da seção (mm)} \end{split}$$

Para um corpo de prova cilíndrico maciço, temos:

$$\tau = \frac{2 \cdot M_t}{\pi \cdot r^3}$$

-Troptômetro: aparelho especial de medição usado em máquinas de ensaio de torção.

c) Ruptura por flambagem na torção

nm4)

Corpos de prova para torção.

Para corpos cilíndricos tubulares, com diâmetro externo D₁ e diâmetro interno D_2 , ou de raios $r_1 e r_2$, temos:

$$\tau = \frac{16 \cdot M_{t} \cdot D_{1}}{\pi \left(D_{1}^{4} - D_{2}^{4} \right)} = \frac{2 \cdot M_{T} \cdot r_{1}}{\pi \left(r_{1}^{4} - r_{2}^{4} \right)}$$

A deformação por torção y é causada pelo cisalhamento interno do material em que as fibras escorregam uma sobre a outra. Pode ser calculada pelo ângulo de torção θ utilizando a unidade em radianos ou por ϕ utilizando a unidade em graus.

$$\gamma = tg\theta = \frac{r\theta}{L}$$

em que:

L = comprimento útil do corpo de prova (mm).

O módulo de elasticidade transversal G de um material, quando solicitado à torção, é obtido analogamente ao módulo de elasticidade E, quando ensaiado à tração. O material na zona elástica, obedecendo à lei de Hooke, também apresenta proporcionalidade entre a tensão de cisalhamento τ e a deformação por torção γ, que pode ser calculada pela fórmula:

em que:

$$G = \frac{M_t \cdot L}{J_P \cdot \theta}$$

 $G = m \acute{o} du lo de elasticidade transversal (kgf/mm²)$ M_t = momento de torção (kgf · mm) L = comprimento útil do corpo de prova (mm) J_p = momento polar de inércia da seção (kgf/mm⁴) θ = ângulo de torção (rad)

Existe uma relação entre o módulo de elasticidade transversal G e o módulo de elasticidade E, que vale dentro da zona elástica do material, expresso da seguinte forma:

$$G = \frac{E}{2(1+\upsilon)}$$

em que:

 υ = coeficinte de Poison no ensaio de tração.

Módulo de ruptura sob torção:

$$\tau_r = \frac{3M_{máx}}{2\pi r^3}$$

em que:

 M_{max} = momento máximo ou torque máximo verificado no ensaio.

4.12 Líquidos penetrantes

O ensaio de líquidos penetrantes teve início em 1942, então usado nas industrias férrea e aeronáutica devido principalmente ao trabalho com ligas não ferrosas.

O método é utilizado em materiais não magnéticos (alumínio, magnésio, aço etc.) e em alguns materiais magnéticos, cerâmicas vitrificadas, vidros, plásticos e outros não porosos (devido ao efeito capilaridade).

Uma das vantagens desse ensaio está na rápida visualização da descontinuidade superficial do material. Com isso diminui a margem de erros para aprovação ou reprovação de peças na linha de produção.

Esse método possui limitações, pois não é possível determinar o nível de profundidade da falha. Além disso, não é utilizado em equipamentos das indústrias alimentícias e farmacêuticas por haver probabilidade de contaminação do produto final.

4.12.1 Classificação dos penetrantes, processos e materiais

(de acordo com a ASTM 1417)

Classificação dos penetrantes

Tipo I – fluorescente Tipo II – visível

Classificação dos métodos

Método A – lavável com água Método B – pós-emulsificável, lipofílico Método C - removível com solvente Método D - pós-emulsificável, hidrofílico

Classificação por sensibilidade

(Os níveis de sensibilidade aplicam-se somente aos sistemas de penetrante do Tipo I)

Sensibilidade nível 1/2 – muito baixa Sensibilidade nível 1 – baixa Sensibilidade nível 2 – média Sensibilidade nível 3 – alta Sensibilidade nível 4 – ultra-alta

Classificação dos reveladores

Forma a – pó seco Forma b – solúvel em água Forma c – suspenso em água Forma d – não aquoso Forma e – aplicação específica

Classificação dos solventes

Classe 1 – halogenados Classe 2 – não halogenados Classe 3 – aplicação específica

Quanto ao penetrante líquido empregado nesses métodos, temos dois tipos principais:

1) Inspeção por penetrante fluorescente: agrega-se ao penetrante uma tintura que fluoresce ao ser examinado sob luz ultravioleta.

2) Inspeção por penetrante líquido colorido: o penetrante possui uma coloração vermelha que facilmente é visualizada no contraste.

Segundo a norma norte-americana ASTM E165-65, os métodos de inspeção por penetrantes líquidos podem ser descritos conforme procedimento descrito na figura 4.60.

Figura 4.60

Procedimento para a realização do ensaio de líquidos penetrantes.

A figura 4.61 mostra o resultado obtido em um teste utilizando o processo de líquidos penetrantes em uma junta soldada.

4.13 Partículas magnéticas

Ensaio de partículas magnéticas é utilizado em indústrias para verificar possíveis descontinuidades superficiais e internas de até aproximadamente 3 mm de profundidade em materiais ferromagnéticos.

O ensaio é realizado por meio do magnetismo produzido por uma corrente elétrica em um material condutor no momento em que entra em contato com a peça, gerando as linhas de força características do campo magnético, como indicado na figura 4.61.

A identificação da descontinuidade se dá por meio de limalhas de ferro espalhadas sobre a peça (via seca). As limalhas se alinham de acordo com o campo magnético gerado pelo condutor, conforme pode ser observado na figura 4.62.

Figura 4.61

Linhas características do campo magnético.

Figura 4.62

Representação dos tipos de linhas de forças magnéticas.

Onde há descontinuidade as linhas sofrem desvios e atraem uma quantidade maior de limalha, facilitando a localização de problemas. Para melhor identificar essas alterações, as magnetizações da peça devem ocorrer em ângulo de 90°, uma em relação à outra, no mesmo local magnetizado anteriormente. Para esse procedimento, utilizam-se equipamentos denominados de yokes (máquinas portáteis), como mostra a figura 4.63.

Figura 4.63 Máquina yoke para ensaios de campo.

Existem duas maneiras de realizar o ensaio de partículas magnéticas:

- via seca, em que as partículas magnéticas são utilizadas a seco;
- via úmida, em que as partículas magnéticas são utilizadas em suspensão em um líquido, por exemplo, água ou óleos minerais de fina viscosidade, ou em peças usinadas com acabamento liso, quando se requer do ensaio maior sensibilidade.

A técnica de via úmida detecta microdescontinuidades superficiais. A técnica de via seca é mais usada em superfícies não usinadas quando não se requer tanta sensibilidade. Nesse caso, utilizam-se equipamentos portáteis e semiportáteis para ensaios de campo.

Para visualizar melhor as descontinuidades, as partículas ferromagnéticas podem ser pigmentadas ou fluorescentes. De acordo com cada técnica de ensaio, a sensibilidade requerida e, principalmente, a cor de fundo das peças ensaiadas, as cores dos pigmentos variam (vermelho, cinza, amarelo, preto etc.).

Os tipos de descontinuidades a serem encontrados determinam os tipos de corrente elétrica utilizados na magnetização: CA (corrente alternada), CC (corrente contínua) ou CA retificada. A CA é mais empregada para a localização de descontinuidades superficiais, e as outras se destinam às descontinuidades subsuperficiais.

A geometria das peças define os tipos de condições de ensaios. Pode ser:

- fixa, ou de bancada (máquinas estacionárias);
- móvel (máquinas de eletrodo) ou portáteis (yokes).

Nas instalações fixas é mais fácil a utilização da técnica da via úmida. As máquinas portáteis podem usar tanto a técnica da via seca como a da via úmida, dependendo das necessidades do ensaio.

Limitações dos ensaios de partículas magnéticas

- Técnicas utilizadas somente para materiais ferromagnéticos.
- Possuem baixa sensibilidade para a detecção de descontinuidade esférica.
- Requerem especialistas para a análise dos resultados.
- Podem aparecer elementos subjetivos na interpretação de um ensaio.
- Requerem normalmente áreas de fácil acesso.
- A faixa de temperatura de trabalho é de até 60 °C na técnica de via úmida e de até 300 °C na técnica de via seca.

Classificação das descontinuidades

Segundo a norma norte-americana ASTM E125-63, 2008, pode-se classificar as descontinuidades, reveladas pelos métodos magnéticos, em oito grupos:

1) Descontinuidades lineares (trincas): são linhas sem orientação preferencial, de largura variável. Usualmente, as trincas se originam na superfície dos fundidos e, em geral, diminuem à medida que se aprofundam no material.

2) Contração: aparece como uma área recortada, com contorno irregular. É uma falha subsuperficial que pode ser levada à superfície do material por usinagem ou trabalho mecânico.

3) Inclusões: aparecem como variações isoladas, irregulares ou alongadas, de ocorrência individual, em distribuição linear ou espalhadas aleatoriamente em listras. Sua ocorrência é indicativa da presença de areia, escória ou ácidos na superfície do metal.

4) Resfriamentos internos e chapelins não fundidos: têm o aspecto de uma linha ou faixa que contorna o objeto e indica falta de difusão entre o objeto de metal e o fundido.

5) Porosidade: tem o aspecto de segregação de partículas magnéticas de vários tamanhos, distribuídas aleatoriamente.

6) Defeitos de solda, que podem ser devidos a:

- porosidade na solda;
- penetração incompleta;
- mordeduras;
- inclusões na solda;
- trincas.

A penetração incompleta apresenta uma disposição linear contínua ou intermitente. As porosidades, inclusões e trincas têm o aspecto já descrito, e as mordeduras aparecem como sulcos ou canais na superfície da peça, ao longo das bordas da solda.

7) Indicações falsas:

- riscos;
- rugas;
- pó depositado em depressões superficiais;
- partículas respingadas;
- marcas de talhadeira.

8) Anomalias magnéticas:

- camadas de ácido adererite;
- "escrita" magnética;
- campo magnético externo alto;
- junção de materiais de permeabilidade diferente;
- partículas aglomeradas em filetes agudos.

Tipos de magnetização

Magnetização circular: mais utilizada em tubos, ocorre em torno da peça.

Magnetização longitudinal: a peça é colocada entre os polos de um eletroímã ou no espaço interno de uma bobina.

4.14 Radiografia industrial

O ensaio radiográfico é um dos principais métodos aplicados na indústria, pois permite a visualização e a inspeção da peça inteira. É utilizado para identificar principalmente problemas internos, tais como: bolhas, descontinuidade, inclusões, entre outros. A identificação é possível por causa da absorção diferenciada da radiação pela matéria: quanto maior a quantidade de massa, maior a quantidade de radiação absorvida. A quantidade de radiação absorvida é quantificada por meio de filme, tubo de imagens ou, ainda, por detectores eletrônicos de radiação.

Esse ensaio é bastante sensível e é capaz de detectar diferenças volumétricas em regiões vizinhas na mesma peça. Os defeitos são visivelmente detectados desde que seu volume não seja muito pequeno em relação ao volume da peça analisada.

4.14.1 Utilização do raio X

Utiliza-se o raio X:

- quando há uma diferença visível na espessura, densidade ou composição do material:
- para materiais com homogeneidade considerável;

• para peças que permitam acessos laterais e diametralmente opostos para tubos.

Exemplos de aplicação

- Para detectar descontinuidades em diversos tipos de materiais;
- na inspeção de peças fundidas, soldadas e componentes montados em conjuntos;
- em vários metais ferrosos e não ferrosos, e em materiais não metálicos, tais como cerâmicas e plásticos.

Equipamento para o ensaio de raios X

Os raios X são produzidos no tubo de Coolidge, que constitui a parte principal do equipamento e varia em função da tensão máxima de operação.

Esse equipamento é constituído de painel de controle e cabeçote ou unidade geradora. No painel de controle estão todas as funções de comando, e no cabeçote está localizado o tubo (emissor de raios) e os dispositivos de refrigeração. A conexão entre painel de controle e cabeçote é feita por meio de cabos especiais de alta tensão.

Os equipamentos podem ser portáteis, com uma tensão máxima de 400 kV, e pesar de 40 a 80 kg. Alguns modelos possuem refrigeração dos tubos por meio de gases e são mais leves que os equipamentos refrigerados a óleo.

Radiografia

Para que a radiografia tenha resultado confiável, não deve apresentar imperfeições, principalmente nas áreas de maior interesse. Para assegurar a qualidade e a sensibilidade da imagem, utiliza-se o penetrômetro, ou IQI (indicador da qualidade de imagem).

Filme

A maneira de utilização se assemelha à de um filme fotográfico. Durante o processo é necessário que incida sobre o filme somente a radiação. A exposição à radiação da camada chamada emulsão contendo sais de prata fará com que o filme seja sensibilizado. O filme indicará, nas áreas escuras, maior quantidade de radiação que passou pela região sensibilizada, correspondente à da peça ensaiada.

Instalações

Para a liberação da construção de uma área para ensaios de emissões radioativas, o projeto deve ser encaminhado para a Comissão Nacional de Energia Nuclear (CNEN), para aprovação.

Entre os itens avaliados estão:

- monitoramento e classificação das áreas;
- blindagem das paredes;
- blindagem das portas;
- sinalização luminosa;
- interruptores no interior da sala onde ficará o aparelho (para interromper a irradiação em caso de emergência);
- *interlock* nas portas (interrompe a irradiação se a porta for aberta);
- medidores de radiação;
- monitores de área (sonoro);
- plano de radioproteção;
- pessoal treinado e qualificado pela CNEN de acordo com as normas NAS 410.

Figura 4.64 Placa de risco de radiação.

4.14.2 Equipamento de raios gama

Para usar a radiação gama, a preocupação com segurança deve ser redobrada, pois, uma vez instalado, o aparelho passa a emitir radiação constantemente. Como proteção, deve-se utilizar uma blindagem (material para blindagem, chumbo ou urânio exaurido), que permite retirar a fonte de emissão do interior do aparelho, realizando a radiografia de forma segura. O conjunto é denominado irradiador. A diferença entre os irradiadores são os dispositivos para exposição da fonte de irradiação, que podem ser mecânicos, pneumáticos ou elétricos. Todos permitem a operação segura do aparelho, sem expor o operador às fontes radioativas.

O irradiador deve suportar choques bruscos, enchentes, incêndios, sem que a blindagem sofra danos que possam expor as pessoas à fonte radioativa. Por esse motivo, sua construção deve seguir as normas internacionais de energia nuclear.

A blindagem é especialmente projetada para conter determinado elemento radioativo. Portanto, não se deve utilizar a blindagem para elementos para os quais não foi projetada. A blindagem do equipamento não pode ser feita e tampouco alterada pelo operador da máquina. Somente um profissional especializado tem condições de realizar essa operação.

As fontes de radiação mais usadas pelas indústrias atualmente são:

- cobalto 60 (Co-60, Z = 27);
- irídio 192 (Ir-192, Z = 77);
- túlio 170 (Tu-170, Z = 69);
- selênio 75 (Se-75), radioisótopo de uso recente na indústria.

4.15 Ultrassom

O ensaio por ultrassom é realizado por meio da reflexão de ondas acústicas, que encontram dificuldades de propagação dentro do material. É utilizado na verificação de descontinuidades internas e em algumas superficiais, em qualquer tipo de material.

O ultrassom trabalha com frequência acima do limite audível, na faixa de 0,5 a 25 MHz.

As ondas acústicas geradas e transmitidas por um transdutor especial encostado ou acoplado ao material devem ser direcionadas no sentido favorável em relação à descontinuidade (interface). Essa descontinuidade reflete as ondas que são representadas, na tela do aparelho ou em um tubo de raios catódicos (TRC), como picos em um gráfico. Em geral, as descontinuidades internas são mensuradas com precisão razoável. Essa informação é comparada com parâmetros de engenharia e padrão de qualidade da própria empresa.

O ensaio de ultrassom também pode ser utilizado com facilidade, rapidez e precisão na detecção de corrosão e medição de espessura.

O ensaio possui uma extensa variação de aplicações, entre elas: vidros, borrachas, materiais compostos, ferrosos e não ferrosos, soldas, laminados, fundidos e forjados. É largamente empregado em usinas siderúrgicas, indústrias de transformação, indústria automobilística, marítima, ferroviária, rodoviária, aérea e aeroespacial.

4.15.1 Produção do ultrassom

A produção do ultrassom se dá pela aplicação de cargas elétricas em cristais piezelétricos, como o sulfato de lítio, o titanato de bário e o quartzo. A corrente elétrica alternada faz com que o cristal vibre na mesma frequência da corrente (emissão), gerando assim o ultrassom. No receptor ocorre de maneira inversa: o ultrassom faz vibrar o cristal, gerando um sinal elétrico de alta frequência. Esse processo de conversão de formas de energia acontece no próprio transdutor. A tabela 4.12 apresenta alguns tipos de transdutores.

Tabela 4 12					
Tipos de transdutores.	TM 510 CL	Aplicação: peças metálicas com fácil propagação sônica. Faixa de medição: 1,00 a 200,00 mm (em aço). Temperatura: ambiente/controlada – até 60°. Área de contato: 10 mm. Frequência: 5 MHz.			
	TM 510TB	Aplicação: medida de peças de fácil propagação sônica. Faixa de medição: 1,00 a 200,00mm (em aço). Temperatura: ambiente/controlada – até 60°. Área de contato: 10mm. Frequência: 5MHz.			
	TM 1008 CM	Aplicação: superfícies planas ou cilíndricas. Faixa de medição: 1,00 a 200,00mm (em aço). Temperatura: ambiente/controlada – até 60°. Área de contato: 10mm. Frequência: 5MHz.			
	TM 216 CL	Aplicação: peças com espessura alta e/ou de difícil penetração. Faixa de medição: 3,00 a 200,00 mm (em aço). Temperatura: ambiente/controlada – até 60°. Área de contato: 16 mm. Frequência: 2 MHz.			
	TM 116 CL	Aplicação: peças com espessura alta e/ou de difícil penetração. Faixa de medição: 3,00 a 150,00 mm (em aço). Temperatura: ambiente/controlada – até 60°. Área de contato: 16 mm. Frequência: 1 MHz.			
	TM 410 a.t.	Aplicação: peças metálicas com alta temperatura. Faixa de medição: 3,00 a 100,00mm (em aço). Temperatura: –10° a 250°. Área de contato: 10mm. Frequência: 4MHz			

Os transdutores podem ser classificados, quanto ao ângulo de emissão/recepção do ultrassom, em normais e angulares. Podem ser construídos com um cristal (emissor/receptor) ou dois cristais (um cristal emissor e outro receptor). Essa diferença de forma de construção é necessária para que as possíveis variações da descontinuidade sejam analisadas com maior rapidez, segurança e qualidade.

4.15.2 Acoplante

Produto líquido, gel ou graxa, dependo das condições do ensaio, utilizado para favorecer a transmissão das ondas sônicas para a peça analisada, não deixando ar entre as duas superfícies. Deve-se tomar cuidado ao escolher o acoplante para evitar possíveis danos à peça ensaiada.

Após a utilização do ultrassom, a peça e o transdutor devem ser completamente limpos de acordo com as especificações técnicas de cada produto ensaiado.

4.15.3 Aparelhos de ultrassom

Diferenciados em relação à tecnologia utilizada, de maneira geral, os aparelhos de ultrassom com recursos de informática e eletrônica fornecem excelentes resultados, pois são capazes de armazenar dados referentes ao ensaio.

Ajustes do aparelho de ultrassom

Para a utilização do aparelho de ultrassom são necessários os ajustes a seguir.

Ganho (dB)

O ajuste do ganho é tão importante quanto o ajuste da escala a ser utilizada no ensaio. Existem dois ajustes de ganho: grosso e fino.

Os ajustes possuem a função de regular a recepção do sinal, têm influência direta na altura do eco na tela e determinam a amplitude de todas as reflexões. Sua unidade de trabalho é o decibel (dB). Uma descontinuidade produz alterações nas amplitudes de reflexão, que são comparadas à amplitude de uma reflexão padrão. A amplitude de reflexão é ainda avaliada em relação à quantidade dB acima ou abaixo da reflexão padrão.

Escala

A escala permite posicionar a reflexão na tela do aparelho, controla a espessura ou percurso sônico (parte horizontal da tela do aparelho) e a distância percorrida pelo feixe sônico dentro do material ensaiado.

A escala varia de aparelho para aparelho, e alguns podem chegar a 5 m. Em aparelhos portáteis chega a até 2 m. Da mesma forma que o ganho, na escala também temos dois botões para controle grosso com posições de 25, 50, 100, 250, 500 e 1 500 mm, indo até o limite de escala, e o ajuste fino, que permite posicionar o eco de fundo na escala horizontal da tela, possibilitando trabalhar com escalas de 132,0 mm, 856 mm. Esse ajuste permite aproximar ou distanciar os ecos e trabalhar com um ou mais ecos de fundo.

Como o eixo hozontal é graduado de 0 (zero) a 10, para uma espessura de 530 mm, posicionando o eco inicial em zero e o eco de fundo, que representa a espessura de 530 mm, em 10, obtemos a escala de 530 mm divididos em dez partes.

Ponto zero

Controle que posiciona os ecos para a direita ou para a esquerda na tela do aparelho, sem alterar a distância entre eles. Permite ajustar o eco inicial em zero e, com o controle da escala que afasta ou aproxima os ecos, posicionar os outros ecos de acordo com a calibração utilizada, facilitando a interpretação dos dados.

Frequência

A frequência é ajustada de acordo com o transdutor utilizado. Nos aparelhos mais modernos, esse ajuste acontece automaticamente.

Velocidade de propagação

Esse ajuste pode comparar as velocidades de reflexão do som para vários materiais.

Supressor de ruídos

Funciona como filtro, eliminando ecos de pequenas reflexões que podem estar relacionados ao próprio aparelho ou ao material de granulação grosseira. Deve-se tomar cuidado para que a regulagem do filtro não mascare pequenos defeitos do material ensaiado.

Blocos de calibração

Conhecidos como bloco V1 e bloco V2, são blocos padronizados para verificar as características dos transdutores e ajustar a escala. Devem ser de material compatível com os materiais a serem ensaiados ou similar no que diz respeito ao ultrassom. Devem ter as dimensões calibradas e podem ou não conter descontinuidades naturais ou artificiais.

Blocos de referência

No ensaio de ultrassom, em que, diferentemente daquele de raio X, não se pode "visualizar" o interior da peça, temos de comparar as peças produzidas com os blocos de referência, para identificar diferenças entre as propagações dos ecos na tela do aparelho. O melhor material para o bloco de referência é aquele confeccionado do mesmo material ensaiado. E ainda, se possível, contendo as descontinuidades naturais para servirem de comparação. Com isso traçam-se as curvas de referência de um bloco conhecido, que são, então, utilizadas para comparar com o material ensaiado.

Linearidade vertical e horizontal do aparelho

A linearidade vertical e horizontal precisa ser verificada sempre antes de cada ensaio. Deve estar dentro de 2% da escala utilizada. A calibração horizontal utiliza o bloco V1, com escala de 100,0 mm e um transdutor de 25,0 mm. O posicionamento dos picos tem de ficar em 0 - 2,5 - 5 - 7,5 - 10.

Verificação do ponto de saída do feixe sônico

A localização do transdutor deve ser direcionada para o raio de 100 mm no bloco V1. Obtém-se, então, a maior amplitude de pico (eco) e faz-se uma referência no bloco V1 e outra na mesma direção na carcaça do transdutor, determinando-se, assim, o ponto de saída do feixe sônico.

Verificação do ângulo do transdutor

Utilizam-se os blocos V1 ou V2 para identificar a marcação do ângulo correspondente ao ângulo do transdutor.

Temperatura

O aparelho deve ter bom desempenho nas seguintes faixas de temperatura:

- aparelhos: de 5 a 40 °C;
- transdutores: de 5 a 85 °C.

Determinação de uma grande descontinuidade

O ensaio de ultrassom descrito destina-se a verificar pequenas descontinuidades. Para grandes descontinuidades utilizam-se os métodos de 6, 12 e 20 dB.

Vantagens do ensaio por ultrassom

- Localização precisa das descontinuidades existentes nas peças.
- Alta sensibilidade na detecção de pequenas descontinuidades.
- Redução dos custos com inspeção e com sucata.
- Aumento da detecção de falhas.
- Controle e otimização de processos.
- Não é necessário parar ou desligar o sistema a ser ensaiado.
- Penetração possível para detectar descontinuidades internas na peça.
- Possibilita uso estacionário ou móvel.
- Possibilita inspeção em superfícies pintadas.
- Excelentes possibilidades de documentar o processo de inspeção.
- Respostas imediatas.

Limitações do ensaio por ultrassom

- Exigência de operador especializado para interpretar os ensaios.
- Ensaio sensível a choque e vibrações.
- Calibração constante do equipamento.

Referências bibliográficas

Elementos de Máquinas

BRASIL, H. V. *Máquinas de levantamento*. Rio de Janeiro: Editora Guanabara Dois, 1988.

CIMAF. Catálogos Cabos de Aço. Cátalogo C-9, 1989.

DOBROVOLSKI, V. Elementos de Máquinas. Editora MIR, 1970.

FERRARESI, D. *Máquinas de elevação e transporte*. Apostila Cabos de Aço, 1978.

MELCONIAN, S. Elementos de Máquinas. 9. ed. São Paulo: Editora Érica, 2009.

OLIVEIRA, N. C. G. Mancais de deslizamento. Escola Politécnica USP, 1969.

PIRES, O. A. L. *Elementos de Máquinas*. Rio de Janeiro: Editora Guanabara Dois, 1980.

SHIGLEY, J. E. *Elementos de Máquina Volume 1*. 3. ed. Rio de Janeiro: LTC, 1988.

STIPKOVIC, M. Engrenagens. 2. ed. Rio de Janeiro: Editora Guanabara, 1983.

Ensaios Mecânicos dos Materiais

BRECIANI, E. F. *Propriedades e Ensaios Industriais dos Materiais*. Escola Politécnica da Universidade de São Paulo (1968).

BRECIANI, E. F.; CAVAGLIA, C. A. C.; BUTTON, S. T. Conformação Plástica dos Metais. UNICAMP, Campinas (1991).

CAMPOS FILHO, M. P.; DAVIES, G. J. *Solidificação de Metais e suas Ligas.* LTC – Livros Técnicos e Científicos Editora S.A. (1978).

COLPAERT, H. Metrologia. Editora Edgard Blucher Ltda (1969).

CALLISTER JR., W. D. *Materials Science and Engineering – Na Introduction*. John Wiley & Sons, Inc., 3. ed. (1994).

GARCIA, Amauri; SPIM, Jaime Alvares; SANTOS, Carlos Alexandre dos. *Ensaio dos materiais*. Editora LTC (1999).

Mecânica Básica

ARANHA, A. Z.; RODRIGUES, M. B. *Exercícios de Matemática vol. 1.* 2. ed. São Paulo: Editora Policarpo, 1998.

BEER, F. P.; JOHNSTON, E. R. *Os Fundamentos da Física 1*. 5. ed. São Paulo: McGraw-Hill, 1991.

GUELLI, C. A.; IEZZI, G.; DOLCE, O. *Álgebra I*. São Paulo: Editora Moderna, 1975.

IEZZI, G.; *Fundamentos de Matemática Elementar*. 7. ed. São Paulo: Atual Editora, 2005.

RAMALHO JR., F.; FERRARO, N. G.; SOARES, P. A. T. *Matemática*. 9. ed. São Paulo: Editora Moderna, 2008.

MELCONIAN, S. *Mecânica Técnica e Resistência dos Materiais*. São Paulo: Editora Érica, 1999.

PROVENZA, F. Projetista de Máquinas. São Paulo: Editora F. Provenza, 1990.

SANGIORGI, O. Matemática. São Paulo: Companhia Editora Nacional, 1968.

TIZZIOTTI, J. G.; SCHOR, D. *Matemática 2º grau – Volume 1*. 6. ed. São Paulo: Editora Ática, 1980.

TIMOSHENKO, S.; YOUNG, D. H. *Mecânica Técnica*. 4. ed. Rio de Janeiro: Editora Ao livro técnico, 1959.

Resistência dos Materiais

ALMEIDA, L. D. F. *Resistência dos materiais*. 7. ed. São Paulo: Editora Érica, 1999.

BEER, F. P.; JOHNSTON JR., E. R. *Resistência dos Materiais*. São Paulo: Editora McGraw-Hill, 1982.

MELCONIAN, S. *Mecânica Técnica e Resistência dos Materiais*. São Paulo: Editora Érica, 1999.

NASH, W. A. *Resistência dos Materiais*. 2. ed. São Paulo: Editora McGraw-Hill, 1989.

SILVA, J. F. *Resistência dos Materiais*. 2. ed. São Paulo: Editora Ao livro técnico, 1966.

TIMOSHENKO, S. D. *Resistência dos Materiais*. São Paulo: Editora Ao livro técnico, 1971.

Sites

ABENDE. "Radiografia, Radioscopia e Gamagrafia". Disponível em: <http:// www.abende.org.br/info_end_oquesao_radiografia.php?w=1152&h=864>. Acesso em: 30 jun. 2011.

ABNT: <http://www.abnt.org.br>. Acesso em: 30 jun. 2011.

ASTM: <http://www.astm.org>. Acesso em: 30 jun. 2011.

CAPPELLI, N. L. *Materiais e tecnologia mecânica*. Disponível em: <http://pt.scribd.com/doc/50187482/Ensaios-Mecanicos>. Acesso em: 30 jun. 2011.

Centro de Informação Metal Mecânica. Material didático. Disponível em: http://www.cimm.com.br/portal/material_didatico. Acesso em: 30 jun. 2011.

DIN: <http://www.din.de>. Acesso em: 30 jun. 2011.

Infra-estrutura – equipamentos: <http://www.ufjf.br/lrm/infra-estrutura/>. Acesso em: 30 jun. 2011.

Instrumento para ensaio de embutimento. Disponível em: <http://www.nei. com.br/lancamentos/lancamento.aspx?i=4954>. Acesso em: 30 jun. 2011.

Laboratório de resistência dos materiais: <http://www.ufjf.br/lrm>. Acesso em: 30 jun. 2011.

Máquina automática de ensaio de embutimento: <http://www.arotec.com.br/ index.php?option=com_content&view=article&id=110&Itemid=119>. Acesso em: 30 jun. 2011.

MULTICLAD: <www.multiclad.com.br/12.html>. Acesso em: 30 jun. 2011.

OLIVEIRA, L. S. R. "Os princípios e fundamentos da radiologia industrial". Disponível em: http://www.tecnologiaradiologica.com/materia_riconceito. htm>. Acesso em: 30 jun. 2011.

QUALIDADE AERONÁUTICA. "Ensaio radiográfico". Disponível em: http://www.qualidadeaeronautica.com.br/princ.RX.htm. Acesso em: 30 jun. 2011.

Transdutores especiais:

<http://www.tecnomedicao.com.br/?p=transdutores>. Acesso em: 30 jun. 2011.

Excelência no ensino profissional

Administrador da maior rede estadual de educação profissional do país, o Centro Paula Souza tem papel de destaque entre as estratégias do Governo de São Paulo para promover o desenvolvimento econômico e a inclusão social no Estado, na medida em que capta as demandas das diferentes regiões paulistas. Suas Escolas Técnicas (Etecs) e Faculdades de Tecnologia (Fatecs) formam profissionais capacitados para atuar na gestão ou na linha de frente de operações nos diversos segmentos da economia.

Um indicador dessa competência é o índice de inserção dos profissionais no mercado de trabalho. Oito entre dez alunos formados pelas Etecs e Fatecs estão empregados um ano após concluírem o curso. Além da excelência, a instituição mantém o compromisso permanente de democratizar a educação gratuita e de qualidade. O Sistema de Pontuação Acrescida beneficia candidatos afrodescendentes e oriundos da Rede Pública. Mais de 70% dos aprovados nos processos seletivos das Etecs e Fatecs vêm do ensino público.

O Centro Paula Souza atua também na qualificação e requalificação de trabalhadores, por meio do Programa de Formação Inicial e Educação Continuada. E ainda oferece o Programa de Mestrado em Tecnologia, recomendado pela Capes e reconhecido pelo MEC, que tem como área de concentração a inovação tecnológica e o desenvolvimento sustentável.

Fundação Padre Anchieta